
DHT Performance Overview

Miika Komu <miika@iki.fi>

What is a Distributed Hash
Table (DHT)?

● Hash Table:
– value = lookup(key)
– store(key, value)

● Distributed: storage and lookups of
values are distributed among multiple
hosts

● Motivation: how do you find a value in a
large P2P system in a scalable manner
without any centralized servers or
hierarchy?

Properties of DHTs

● Each node...

– has a unique node ID

● The value is stored at the node whose ID is closest
to the key

● Closeness = distance function
– maintains state: a small list of the node IDs

(“neighbours”) and the corresponding IP addresses

– forwards queries for a key to the closest neighbour

● Routing geometries

– Skiplist, tree-like, multidimensional

● Iterative vs. recursive routing (factor: 0.6)

Chord (Ring)

● Distance function = numeric difference
between two node Ids

● Skiplist like (power of two) routing

Pastry

● Distance function =
number of common
prefix bits

● Tree-like routing
– Two-stage routing

protocol (leaf set,
routing table)

Tapestry

● Distance function =
number of common
prefix bits

● Tree like routing
● Uses “salt” to avoid

root node failures

CAN

● Routing geometry:
d-dimensional
cartesian
coordinate space

● Distance function:
adjacent “zone”

Kademlia (XOR)
● Distance function = XOR

(ID1,ID2)
– Unidirectional: does not

need a two-stage protocol
like Pastry

– Symmetric: no need for a
stabilization protocol like
in Chord; routing tables
are refreshed as a side
effect of ordinary lookups

Performance Evaluation

● Metrics
– Number of hops
– Latency

● Things that affect performance
– Churn
– Packet loss
– Proximity Routing
– Caching

Performance Bounds/Results

Lookup State Relative Delay Penalty Median HOP count
Chord O(logN) O(logN) 6 7
Pastry O(logN) O(logN) 9 8
Tapestry O(logN) O(logN) N/A 8
CAN O(d) 6 8
Kamdelia O(logN) O(logN) N/A 8

RDP = 1000 nodes, no failures
HOP = 65536 nodes, no failures

O(dN1/d)

Optimal Lookup and State

● Beehive achieves O(1) performance
with proactive caching

● Butterfly keeps only O(1) state
– Caveat: Median hop count 21

Resiliance and Recovery

● Resiliance through flexibility
– Flexibility in neighbour selection yields

better paths than route selection
– Chord and Kamdelia have the greatest

flexibility

– Tree and butterfly have the least

● Churn recovery
– Periodic better than reactive

Summary

● Performance of all DHT algorithms is
pretty good

● DHTs can handle churn (P2P
enviroments) and path failovers

● O(1) lookups with proactive caching
(DNS?)

● Lot's of papers and implementations
available

Future Work

● Authentication, Authorization,
Accounting
– The impact on performance

● So far, only application level – would
this work directly on network level?

● Competing free version of i3?

Bibliography
[1] Zhao et al. Tapestry: A Resilient Global-Scale Overlay for Service Deployment

[2] Rhea et al. Handling Churn in a DHT

[3] Ratnasamy et al. A Scalable Content-Addressable Network

[4] Stoica et al. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications

[5] Rowstron et al. Pastry: Scalable, Decentralized Object Location and Routing for Large-scale Peer-to-peer Systems

[6] Balakrishnan et al. Looking Up Data in P2P Systems

[7] Maymounkov et al. Kademlia: A Peer-to-peer Information System Based on the XOR Metric

[8] Sit et al. Security Considerations for Peer-to-peer Distributed Hash Tables

[9] Ramasubramanian et al. Proactive Caching for Better than Single-Hop Lookup Performance

[10] Jain et al. A Study of the Performance Potential of DHT-base Overlays

[11] Castro et al. Performance and Dependability of Structured Peer-to-peer Overlays

[12] Li et al. Comparing the Performance of Distributed Hash Tables under Churn

[13] Ramasubramanian et al. Beehive: O(1) Lookup Performance for Power-Law Query Distributions in Peer-to-peer
Overlays

[14] Dabek et al. Designing a DHT for Low Latency and High Throughput

[15] Gummadi et al. The Impact of DHT Routing Geometry on Resilience and Proximity

●

