
Applying a Cryptographic Namespace to Applications

Miika Komu
Helsinki Institute for Information Technology

Advanced Research Unit
P.O. Box 9800

FIN-02015 HUT, Finland

miika@iki.fi

Sasu Tarkoma
Helsinki University of Technology

Telecommunications Software and Multimedia
Laboratory

P.O.Box 5400
FIN-02015 HUT

sasu.tarkoma@tml.hut.fi

Jaakko Kangasharju
Helsinki Institute for Information Technology

Advanced Research Unit
P.O. Box 9800

FIN-02015 HUT, Finland

jkangash@hiit.fi

Andrei Gurtov
Helsinki Institute for Information Technology

Advanced Research Unit
P.O. Box 9800

FIN-02015 HUT, Finland

gurtov@cs.helsinki.fi

ABSTRACT
The Host Identity Protocol (HIP) is a promising solution for
dynamic network interconnection. HIP introduces a name-
space based on cryptographically generated Host Identifiers.
In this paper, two different API variants for accessing the
namespace are described, namely the legacy and the native
APIs. Furthermore, we present our implementation expe-
rience on applying the APIs to a number of applications,
including FTP, telnet, and personal mobility. Well-known
problems of callbacks and referrals, i.e., passing the IP ad-
dress within application messages, are considered for FTP
in the context of HIP. We show that the callback problem is
solvable using the legacy API. The APIs are important for
easy transition to HIP-enabled networks. Our experimen-
tation with well-known network applications indicate that
porting applications to use the APIs is realistic.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—applications, protocol architecture; C.2.1 [Com-

puter-Communication Networks]: Network Architec-
ture and Design

General Terms
Design, Experimentation, Security, Standardization

Keywords
Host Identity Protocol, sockets API, referral, personal mo-
bility

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIN’05, September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-144-9/05/0009 ...$5.00.

1. INTRODUCTION
The interconnection of mobile nodes, mobile networks,

and multi-homed hosts is a challenging task within the cur-
rent Internet architecture. The Host Identity Protocol (HIP)
being developed by the IETF [8] is a promising solution to
address these issues. The HIP layer is located between the
network and transport layers and provides a new crypto-
graphic addressing space for applications, where communi-
cation endpoints are identified using public cryptographic
keys instead of IP addresses. However, HIP by itself provides
no benefits unless there are applications using the protocol.
In this paper, we consider the important problems of accom-
modating legacy applications to run on top of HIP, and of
designing a native HIP API for new networking applications.

The fundamental idea behind HIP is to divide the address
of a network-addressable node to two parts: the identifier
and locator parts. The identifier part uniquely names the
host using a cryptographic namespace and the locator part
uniquely defines the topological location of the node in the
network.

The main benefits of the new HIP namespace are statis-
tically unique identifiers, separation of identifiers from their
topological location, better support for delegation and in-
termediaries, multi-homing/mobility support, and security
features such as authentication and confidentiality [8, 1, 15].
Recently, many systems based on globally unique flat name-
spaces have been proposed, including Unmanaged Internet
Protocol (UIP) [3], i3 [15], and Delegation Oriented Archi-
tecture (DOA) [1]. IPv6 addresses some of the concerns
with IPv4 and Network Address Translations (NATs), but
still couples the identity of the hosts with the location.

The introduction of a new namespace requires considera-
tion of two new architectural issues: how the new namespace
is used in packets, and how the identifiers are resolved and
distributed. In addition, mechanisms that allow applica-
tions to leverage the properties of the namespace are needed.
We focus on the applications and present two APIs, legacy
API [4] and native HIP API [6]. The APIs are all included
in our HIP for Linux implementation [2].

The rest of the paper is organized as follows. A brief

overview of HIP architecture is given in Section 2. In Sec-
tion 3, the legacy and native APIs for HIP are described. In
Section 4, we illustrate the use of HIP APIs for FTP, Telnet,
and personal mobility applications. Section 5 concludes the
paper.

2. THE HIP NAMESPACE
HIP [8] introduces a new Host Identifier (HI) namespace

for the Internet. The HIs are disjoint from the IPv4 and
IPv6 namespaces in order to provide location independent
identification of upper-layer endpoints. By decoupling the
network-layer identifiers from the upper-layer identifiers, the
HIP architecture provides a sound foundation on which to
build mobility and multi-homing support. The upper layers
have stable endpoint identifiers, but network-layer addresses
can change dynamically.

The endpoints are identified using asymmetric cryptogra-
phy. A HI is the public key component of an asymmetric
key pair. The private key is owned by the endpoint, making
impersonating another endpoint very difficult. HIP uses the
HIs as Transport Layer Identifiers (TLIs). The locators, i.e.,
IP addresses, are used only in the network layer. There is
a one-to-many binding between a HI and the corresponding
locators [11]. As the HI is essentially a variable-sized pub-
lic key, it is difficult to use in datagram headers. Further,
long identifiers are difficult to support in the sockets API
because it imposes a limit of 255 bytes to socket address
structures. To address these problems, the HIP architecture
also includes fixed-size representations of the HI. A Host
Identity Tag (HIT) is a 128-bit long hash of the HI, and a
Local Scope Identifier (LSI) is a 32-bit representation of the
HIT.

In the traditional TCP/IP model, connection associations
in the application layer are uniquely distinguished by the
source IP address, destination IP address, source port, des-
tination port, and transport protocol type. HIP changes
this model by using HITs in the place of IP addresses. The
HIP model is further expanded in the native HIP API model
by using Endpoint Descriptors (EDs) instead of HITs. Now,
the application layer uses source ED, destination ED, source
port, destination port, and transport protocol type to distin-
guish between different connection associations. The name-
space model used in the native HIP API is shown in Figure 1.

Transport Layer

HIP Layer

Network Layer

HI, port

HI

IP address

User Interface

Application Layer

Host name

ED, port and
protocol type

Figure 1: The HIP namespace model

The ED is used for hiding the representation of endpoints
from applications in the native HIP API. It acts as a handle

or an alias to the corresponding HI on the host. It is an
integer having only local significance, similar to a file or
socket descriptor. This kind of identifier with only local
significance appears also in other namespace models, such
as in OCALA [5].

The difference between the application and transport layer
identifiers is that the transport layer uses HIs instead of
EDs. The TLI is named with source HI, destination HI,
source port, and destination port at the transport layer.
Correspondingly, the HIP layer uses HIs as identifiers. The
HIP Security Associations (SAs) are based on source HI and
destination HI pairs. The network layer uses IP addresses,
i.e., locators, for routing. The network layer interacts with
the HIP layer to exchange information about changes in the
addresses of local interfaces and peers.

The native HIP API socket bindings are visualized in Fig-
ure 2. A HIP socket is associated with one source and one
destination ED, along with their port numbers and the pro-
tocol type. Multiple EDs and ports can be associated with
a single HI. Further, the source HI is associated with a set
of network interfaces at the local host. The destination HI,
in turn, is associated with a set of destination addresses of
the peer.

Dynamic Binding

*

*

1

1

HIP
socket

Src ED

and port
Dst ED

and port
1* * *

1* * * Dst Addr

Src IfaceSrc HI

Dst HI

Figure 2: Native HIP API socket bindings

We believe that using EDs instead of HITs at the ap-
plication layer has two useful properties. First, it simplifies
implementing opportunistic base exchange, and second, EDs
can be seen as a higher-layer concept to separate application-
layer identifiers from those of lower layers.

In opportunistic base exchange the initiator does not know
the responder’s HIT, but only its IP address. Trying to im-
plement this with the legacy API using the standard sockets
API forces the application to associate its socket with the
responder’s IP address instead of its HIT. This increases
the complexity of the HIP implementation, since a mapping
from IPs to HITs is now needed, and it may not function
reliably when IP addresses change due to mobility. In the
native HIP API, however, the application binds to an ED.
The HIP implementation can then transparently associate
this ED with the responder’s HIT that is learned later dur-
ing the base exchange. Since EDs are already used in the
native HIP API, supporting opportunistic mode does not
increase the complexity of the HIP implementation.

It also seems to us that the new abstraction layer pro-
vided by the EDs may have some synergy with service iden-
tifiers [1] or session layer identifiers [14]. However, we are
currently investigating this idea, and will not consider it
further in this paper.

3. HIP API
In this section, we describe two APIs for applications to

access the HIP namespace. The APIs are described in the C
programming language, although Java is also supported by
our implementation. First, we present the legacy API which
is intended as an easy migration path towards HIP-enabled
applications. Next, we present the native HIP API that
allows applications to fully utilize the new namespace and
protocol. Finally, we discuss problems related to referrals.

3.1 Legacy API
Network applications typically use host names to address

peers. Host names have to be resolved to IPv6 addresses
from the Domain Name System (DNS) in the resolver li-
brary before network connections can be established with
peers. In the legacy API, the resolver routine has been mod-
ified to prefer HITs as the result of DNS queries instead of
IPv6 addresses. Otherwise, the legacy API appears like the
standard sockets API to the application.

We modified the resolver library to support HIP in two
ways. In transparent mode, the DNS queries resolve silently
to HITs instead of IPv6 addresses. For backwards compat-
ibility, the resolver returns IP addresses if no HITs were
found. The greatest benefit of the transparent mode is that
it requires no changes in the application. However, a draw-
back of the transparent mode is that the resolver is not guar-
anteed to always return HITs. To address this shortcoming,
applications can use the resolver in explicit mode by pass-
ing a flag explicitly to the resolver. This flag enforces the
use of HIP by making the resolver return only HITs to the
application. Effectively, this means that connections will be
established using HIP or not at all. This way, HIP can be
used with minimal changes in HIP-aware applications.

Example code using the legacy API is shown in Figure 3.
The only modification from a standard socket application is
the use of a flag flag to enable the explicit mode.

struct addrinfo hints, *res, *try;

char *hello = "hello";

int err, int bytes, sock;

memset(hints, 0, sizeof(hints));

hints.ai_flags = AI_HIP;

hints.ai_family = AF_INET6;

hints.ai_socktype = SOCK_STREAM;

err = getaddrinfo("www.host.org", "echo",

&hints, &res);

sock = socket(res->ai_family,

res->ai_socktype,

res->protocol);

for (try = res; try; try = try->ai_next)

err = connect(sock, try->ai_addr,

try->ai_addrlen);

bytes = send(sock, hello, strlen(hello), 0);

bytes = recv(sock, hello, strlen(hello), 0);

err = close(sock);

err = freeaddrinfo(res);

Figure 3: A “Hello, world” client using the legacy

API.

3.2 Native HIP API
The legacy API requires only minor changes in applica-

tions, and therefore it cannot utilize all features of a HIP-
enabled networking stack. Applications requiring more con-
trol over the HIP layer can use the native HIP API [6]. The
most significant difference between the legacy and the native
APIs is that the native HIP API can use public-key identi-
ties in the userspace sockets API. A direct benefit of this is
that the users can provide their own public key identifiers
to the networking stack. As a result, the identities are not
bound to just hosts; they can be bound to users, processes,
or groups. For instance, process migration systems [7] may
benefit from this as the HI can be moved along with the
process. In addition, if DNS is used to store public keys
instead of HITs [10], the explicit public key handling in the
native HIP API should become useful.

We propose a PF HIP protocol family to be available in
HIP-enabled network stacks. HIP-aware applications use
the existing transport layer sockets API and specify this
new protocol family when creating sockets. By creating a
HIP-enabled socket, an application can detect whether HIP
is supported on the local host. Similarly, an application can
detect HIP support in a peer host by resolving the EDs of
the peer. If the peer does not support HIP, the resolver
returns an empty set.

The syntax of the native HIP API is similar to the legacy
API. The crucial differences are the use of PF HIP instead
of AF INET6, and a new socket structure for EDs. The re-
solver function is used in a similar way as the legacy API
resolver [6]. An example use of the native HIP API is shown
in Figure 4. The example uses an application-specified iden-
tifier from the file /home/mk/hip host dsa key.

int sockfd, err, family = PF_HIP,

type = SOCK_STREAM;

char *user_priv_key = "/home/mk/hip_host_dsa_key";

struct endpoint *endpoint;

struct sockaddr_ed my_ed;

struct endpointinfo hints, *res = NULL;

err = load_hip_endpoint_pem(user_priv_key,

&endpoint);

err = setmyeid(&my_ed, "", endpoint, NULL);

sockfd = socket(family, type, 0);

err = bind(sockfd, (struct sockaddr *) &my_ed,

sizeof(my_ed));

memset(&hints, 0, sizeof(&hints));

hints.ei_socktype = type;

hints.ei_family = family;

err = getendpointinfo("www.host.org", "echo",

&hints, &res);

/* connect, send and recv as in Figure 3 */

Figure 4: A “Hello, world” client with application-

specified identifiers in the native HIP API.

An application can control the HIP layer better using the
native HIP API than the legacy API. For example, the ap-
plication can set the base exchange puzzle to be more dif-
ficult for a specific server port number, request for higher
SA lifetimes, use smaller (and less secure) key lengths, or

even specify its own HIs. Quality of Service (QoS) related
attributes can also be accessed through the native HIP API
to allow the simultaneous use of multiple IP flows. This en-
ables applications to benefit from soft-handover strategies,
or to select a data path depending on the available QoS.
For example, the application can be notified when a LAN
interface of the host is activated, so that the application can
use it for data traffic instead of a slow WLAN link.

3.3 The Referral Problem
HIP introduces a new address space for the transport

layer. Basically, the address space is flat although it is pos-
sible to use type 2 [8, 10] HITs that contain a domain prefix.
Using the prefix, HITs can be resolved to IP addresses from
the DNS. However, the problem with this approach is that
it has some security implications due to the increased prob-
ability of HIT collisions. As a consequence, we may need to
have full-length type 1 HITs [8, 10] in the future.

However, this causes problems for applications that need
a remote application to initiate a connection. Currently
they communicate either their own IP address (callback) or
that of a third party (referral) [12]. The remote applica-
tion will later connect to the communicated address. Using
the legacy API with such applications would replace these
IP addresses with HITs. However, since HITs cannot be
resolved to IP addresses in the current DNS infrastructure,
the remote application cannot typically initiate the required
connection.

There are at least three ways to solve this problem. One
way is to modify the DNS infrastructure to support type 2
HIT lookup. The second way is to use an overlay based on
a flat namespace such as Internet Indirection Infrastructure
(i3) [17] to support resolving of HITs. Third, the overlay
can also be used for packet routing, at least for the initial
HIP signaling [9], but this is out of the scope of this paper.

4. HIP APPLICATIONS
In this section, we present three HIP-enabled applications.

We begin with an FTP application, which has been labeled
by the community as challenging for HIP. Then, we examine
a Telnet application that was ported to use the native HIP
API. Finally, we describe an application of personal mobility
with HIP.

4.1 FTP and Referrals
File Transfer Protocol (FTP) [13] uses two separate chan-

nels (TCP connections) for communication, one for control
and one for data. The data channel can be initiated in two
ways. In a passive mode, the server passes its IP address
and port number as a callback to the client using the con-
trol channel. Then the client initiates a data channel to the
server based on the IP address and port number given by
the server. In an active mode, it is the vice versa: the server
initiates the data channel to the IP address and port given
by the client.

The FTP way of passing addresses as callbacks can be
considered problematic when HIP is used because HITs are
used instead of IP addresses. The crux of the problem is that
the application may not be able to resolve a given HIT to
a routable IP address. We decided to experiment with this
problem using the legacy API with an initial expectation of
failure.

Our callback experiment used IPv6-enabled FTP client

and server software (lftp version 3.1.3 and proftpd version
1.2.10). Both the client and the server used the legacy API,
thus requiring no modifications. We carried out a simple test
where the client contacted the HIT of the server and down-
loaded a file. Surprisingly, both modes, active and passive,
worked properly. We also experimented with a mobility han-
dover during file download by changing the currently active
address of the client. This caused only a relatively small
delay during the file download.

The reason why the callback worked in the case of FTP is
that once the client (initiator) and server (responder) have
established a security association, they are aware of each
other’s HIT-to-IP mappings. The mapping from the HIT to
IP address(es) is not lost because it is valid at least for the
lifetime of the IPsec SA.

However, the callbacks are only a part of the problem. In
the FTP case, it is possible to use referrals instead of call-
backs, but fortunately this feature is rarely used. The refer-
ral problem occurs when the client creates a new data chan-
nel using the FTP protocol to server A, but redirects it to
another server B. As the redirection is based on a HIT, server
B must resolve the HIT to an IP address, which requires sup-
port from the infrastructure. We already described three
general solutions to this problem in Section 3.3. Addition-
ally, it would also be possible to extend the FTP protocol
to use either FQDNs or HITs and IP addresses together.

4.2 Telnet
We ported an IPv6-enabled Telnet client and daemon to

use the native HIP API. We configured the native HIP API
into the code as a compile-time option. The porting process
itself was quite straightforward. As the native HIP API
resolver name and related data structure are named differ-
ently from their IP-based API correspondents, the porting
process consisted mainly of search and replace operations in
the source code. The API names are different to emphasize
the introduction of the new namespace in the resolver but
the syntax is almost identical [6].

4.3 Personal Mobility
Personal mobility and device personalization are becom-

ing an important part of applications and mass-market de-
vices. Personal mobility occurs when the user changes de-
vices. Personalization is needed to change the user experi-
ence on a new device to meet the user’s expectations. Al-
most all recent mobile phones support personalization of the
device to accommodate the user’s preferences, for example
in call settings, buddy-lists, and user interface appearance.

A HI can be used to support personal mobility and de-
vice personalization. This is accomplished by associating
the HI with a user and using a smartcard or a USB stick
to store the HI. Personal mobility takes place when the user
inserts the identity storage device containing the HI into a
terminal device. The HI can then be used to initiate a HIP
connection, and to support mobility and multi-homing. The
HI may also be used to locate, download, and synchronize
data needed for device personalization, such as device, user
interface, and preference profiles. Since the HI is a public
cryptographic key, it allows authentication of the client as
well as confidentiality of the personalization data.

We experimented with a scenario in which the HI is stored
on a USB memory stick and can be moved between differ-
ent machines. The insertion of the USB stick is detected

automatically. After detection, the HI is loaded to the HIP
kernel module, and then used by applications. We demon-
strated HIP-based connections in personal mobility for file
synchronization and for streaming audio playback.

In our scenario, the USB stick only contains the HI, and
the connections are not persistent. In the future we also plan
to store data related to the session state on the stick so that
connections can be restored at the new location. In addition,
we envision that the USB stick can be replaced with a smart
card that can create and verify signatures directly. This way,
users can use their personal identities even on untrusted
hosts (for example in Internet cafes) without compromising
their private keys. Further, users can prevent other people
from tracking their personal identifier and location by using
either short-lived HIs or “blinded” HITs [16].

5. CONCLUSION
In this paper we have presented the legacy and the native

APIs of our Linux-based HIP implementation. The legacy
API does not necessarily require changes to applications.
The native API requires modifications, but allows applica-
tions to provide their own public key identities. The cryp-
tographic namespace is useful for applications and we dis-
cussed the implications for three example applications: FTP,
Telnet, and personal mobility and personalization. Initially,
we expected HIP-enabled FTP to be hindered by the call-
back problem, but our analysis and experimentation showed
that callbacks are not an issue. We observed that it was rel-
atively straightforward to port a Telnet utility to use the
native HIP API. As an example of the benefits of the na-
tive HIP API, we discussed personal mobility and device
personalization using Host Identifiers and USB sticks.

As a conclusion, we envisage that simple network applica-
tions use the legacy API in a transparent fashion, and more
advanced applications utilize the new namespace using the
native HIP API. We expect that the migration to HIP may
require changes in some applications, but our experiments
with basic networking utilities and the legacy API indicate
that the introduction of the new namespace is realistic.

6. ACKNOWLEDGMENTS
We thank Jukka Ylitalo, Jeff Ahrenholz, Teemu Koponen,

Abhinav Pathak and Thomas Henderson for their comments
on the the paper. Niklas Karlsson developed a small feature
to the HIP module that was required for the FTP daemon
to work (binding to a HIT using the legacy API). We also
thank the anonymous reviewers for their helpful comments.

7. REFERENCES
[1] H. Balakrishnan, K. Lakshminarayanan,

S. Ratnasamy, S. Shenker, I. Stoica, and M. Walfish.
A Layered Naming Architecture for the Internet. In
Proc. of ACM SIGCOMM’04, pages 343–352, Aug.
2004.

[2] C. Candolin, M. Komu, M. Kousa, and J. Lundberg.
An implementation of HIP for Linux. In Proc. of the
Linux Symposium, July 2003.

[3] B. Ford. Unmanaged Internet Protocol: taming the
edge network management crisis. ACM Computer
Communication Review, 34(1):93–98, 2004.

[4] T. R. Henderson. Using HIP with legacy applications:
draft-henderson-hip-applications-01, July 2005. Work
in progress. Expires in January 19, 2006.

[5] J. Kannan, A. Kubota, K. Lakshminarayanan,
I. Stoica, and K. Wehrle. Supporting legacy
applications over i3. Technical Report
UCB/CSD-04-1342, University of California at
Berkeley, May 2004.

[6] M. Komu. Native Application Programming Interfaces
for the Host Identity Protocol:
draft-mkomu-hip-native-api-00. Internet Engineering
Task Force, Sept. 2004. Work in progress. Expires
August, 2005.

[7] T. Koponen, A. Gurtov, and P. Nikander. Application
mobility with Host Identity Protocol. In Proc. of
NDSS Wireless and Security Workshop, San Diego,
CA, USA, Feb. 2005. Internet Society.

[8] R. Moskowitz, P. Nikander, P. Jokela, and
T. Henderson. Host Identity Protocol:
draft-ietf-hip-base-03, June. 2005. Work in progress.
Expires in December, 2005.

[9] P. Nikander, J. Arkko, and B. Ohlman. Host Identity
Indirection Infrastructure (Hi3). In Proc. of The
Second Swedish National Computer Networking
Workshop 2004 (SNCNW2004), Karlstad, Sweden,
Nov. 2004.

[10] P. Nikander and J. Laganier. Host Identity Protocol
(HIP) Domain Name System (DNS) extensions:
draft-ietf-hip-dns-01.txt, Feb. 2005. Work in progress.
Expires in August, 2005.

[11] P. Nikander, J. Ylitalo, and J. Wall. Integrating
Security, Mobility, and Multi-homing in a HIP way. In
Proc. of Network and Distributed Systems Security
Symposium (NDSS’03), San Diego, CA, USA, Feb.
2003. Internet Society.

[12] E. Nordmark. Multi6 Application Referral Issues.
Internet Engineering Task Force, Jan. 2005. Internet
draft, work in progress.

[13] J. Postel and J. Reynolds. RFC959: File Transfer
Protocol (FTP). Internet Engineering Task Force, Oct.
1985.

[14] M. A. C. Snoeren. A Session-based Architecture for
Internet Mobility. PhD thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering
and Computer Science, Feb. 2003.

[15] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. In Proc.
of ACM SIGCOMM’02, Pittsburgh, PA, USA, Aug.
2002.

[16] J. Ylitalo and P. Nikander. BLIND: A complete
identity protection framework for end-points. In Proc.
of the Twelfth International Workshop on Security
Protocols, Apr. 2004.

[17] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker.
Host Mobility using an Internet Indirection
Infrastructure. Technical report, University of
California at Berkeley, 2002.

