

Protocol Design

T-110.4100 Computer Networks
16.10.2006

Miika Komu <miika@iki.fi>
Helsinki Institute for Information Tech.

mailto:miika@iki.fi

Table of Contents

● Goals, Design
● Layering
● Addressing/Naming
● Network

Environment
● Properties of

Protocols
● State Machines

● Protocol
Communication

● Encoding
● Robustness
● Security
● Scalability
● Deployment
● Standardization

Goals and Requirements

● Need to exchange information between
two or more hosts => need for a protocol
– The usage scenarios are mapped to protocol

engineering goals and requirements

● Can't have everything: goals usually
conflict with each other, need to prioritize
– Reliable vs. fast
– Versatile vs. simple
– Usable vs. secure

Design and Specification

● Extending an existing protocol vs.
creating from scratch

● Three aspects:
– Host processing: protocol states, transitions,

timers, etc
– Serialized network data and formatting
– Implementation complexity, performance, etc

● Typical session design: handshake,
connection maintenance and teardown

● KISS = Keep It Simple Stupid!

Protocol Correctness

● Verify that the protocol “works”
– Implement it!
– Simulation or emulation
– Mathematical analysis
– Security analysis

● Ready for deployment?
– More difficult to “fix” already deployed

protocols and implementations

Layering

● On which layer should the protocol
operate?
– Not always clear: e.g. TLS vs. IPsec

● Application layer: more intelligent
decisions, easier to implement, easier to
deploy
– Application frameworks and middleware

● Lower layers: generic purpose “service”
to application layer => software reuse

● Strict layering vs. layer violations

Addressing and Naming

● Human readable
– Hostnames, URIs, email-addresses

● Machine readable
– IP addresses
– MAC addresses
– Cryptographic names

● Public keys (gpg) or fingerprints (ssh)

Network Environment

● Access Media
– wired vs. wireless media

● Single-hop vs. Multihop networks
● LAN, WAN
● IPv4 and IPv6 networks
● Multihoming and multiaccess
● Multipath
● Mobile host vs. fixed host
● Infrastructure requirements (third host)

Some Protocol Properties

● Reliability
● Duplicate handling
● Congestion control
● Error detection

(checksums, CRC)
● Error correction

(Reed-Solomon)
● Zero configuration

vs. managed

● Multiplexing
● Mobility
● Multihoming
● Security
● Privacy

About State Machines

● Stateless operation

● Stateful operation

– State transitions

– Symmetric (mirrored) state machine

– Asymmetric state machine (receiver and sender state)

– Hard state
● state transitions explicitly confirmed
● state does not expire

– Soft state
● needs to be refreshed, otherwise falls back to

default state

Protocol Communications

● Unicast, anycast, broadcast, multicast
● Point-to-point vs. end-to-end
● Client/server vs. p2p
● Separate control and data channel
● Internet routing vs. overlay routing
● Strict packet ordering using seq numbers
● Acknowledgments and Automatic Repeat

reQuest: wait-ack, nak, go-back-n, sack
– Window size

Protocol Encoding 1/2

● Serialization, marshalling to wire format
● PDU, framing, segmentation, MTU
● Text encoding (appl. layer protocols)

– xml, http, sip
– easier to debug for humans
– lines separated by newlines
– character set issues
– inefficient (compression)

Protocol Encoding 2/2

● Binary formats
– e.g. IPv4, IPv6, TCP
– Integers in Big-Endian format
– Padding
– Saves bandwith when compared to text enc
– XDR, ASN.1, BER, TLV, etc

● Typically binary formats are visualized in
“box notation” for engineers in protocol
specifications

Robustness 1/3

● Retransmissions (e.g. WLAN) and
timeouts

● Application and host restarts
● Simultaneous handshakes
● DoS and DDos protection
● Timeouts
● Failover mechanisms
● Synchronous vs. asynchronous

communication

Robustness 2/3

● Incompatible protocols should reject
communication with each other!
– For example v1 and v2 protocol

● Critical and optional protocol options and
negotiation

● Be conservative in sending and liberal in
receiving (for interoperability)
– Specification is a guideline: interoperability

between real-world implementations more
important in practice

Robustness 3/3

● Design for change and modularity
● Avoid layer violations

– However: cross-layer interaction

● Design it as simple as you can, but not
simpler

● Completeness, consistence and clarity

Security 1/5

● Better to embed in the design from day
one
– We don't need security – think again!

● Attack pattern
– scan, intrude, exploit, abuse, cover tracks

● Protection pattern
– prevent, detect, contain

Security 2/5

● Internal vs. external threat
– Attacker within company or outside
– localhost vs. remote attack

● Active (write packets) and passive (read
packets) attacks

● Man-in-the-middle, blind attack
● Link-local attacks vs. remote attacks
● Reflection, amplification, flooding

Security 3/5

● Security countermeasures (with varying levels of
protection):

– Access control lists, passwords, authentication

– hashchains, HMACs, signatures

– symmetric cryptography
● Attacks against availability: resource depletion /

exhaustion (DoS/DDoS), countermeasures:

– Rate limitation

– Computation puzzles
● Require connection initiator to do some work

Security 4/5

● Reuse existing mechanisms: SSL vs. IPsec

– IPsec does not require changes in the application

– How does the application know that the
connection is secured?

● Opportunistic security vs. infrastructure

– Leap of faith/time or huge deployment cost?
● Usability <> security

– Security increases complexity

– Avoid manual configuration
● Privacy adds complexity

Security 5/5

● Do not hard code crypto algos to the protocol! Use
suites and negotiation because algos become
vurnerable due to faster machines (Moore's law)

● Murphy's law: everything that can go wrong, will go
wrong

– Hackers will find and abuse holes in the design
and implementations

– The overall strength of the system is as strong
as its weakest link!

● Open Design vs. Security by Obscurity

– Four eye balls is more than two

Scalability

● Backwards and forwards compatibility
● State explosion
● Computational overhead and complexity

– Small devices with poor CPU and batteries

● Load balancing
● Decentralization
● Caching
● Adaptability
● Efficiency: e.g. MTU and fragmentation

Deployment Obstacles

● Middlebox traversal

– Does the protocol go through NATs, routers. proxies
and firewalls? On what probability?

● NAT traversal

– NATs make protocol engineering difficult; each
protocol has to take care of NATs redundantly

– Deployed NAT devices work differently!

– New transport protocols get dropped

– Server and p2p don't work

– Referrals don't work

– Counter-measures: UDP encapsulation, hole punching,
STUN, TURN relay, ALGs, MIDCOM

IETF Standardization

● Why? More reviewers => better security, compatibility,
deployment, scalability

– Even wizards make errors

● Why not? Standardization takes time

● Open participation, no membership fee

● Process pattern: BoF -> WG -> drafts -> RFC -> close WG

● Rough consensus and running code

– To get an RFC, two interoperable implementations are
required

● IETF also includes research groups for experimental designs

● IPR: best effort notification about patents

– Watch out for submarines!

