
HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Blerta Bishaj

E�cient Leap of Faith Security

with Host Identity Protocol

Master's Thesis
Espoo, June 24, 2008

Supervisors: D. Sasu Tarkoma, Helsinki University of Technology
Ph.D. Peter Sjödin, The Royal Institute of Technology

Instructor: Miika Komu, M.Sc.(Tech), Helsinki University of Technology

HELSINKI UNIVERSITY ABSTRACT OF THE

OF TECHNOLOGY MASTER'S THESIS

Faculty of Information and Natural

Sciences

Degree Programme of Security and

Mobile Computing

Author Date

Blerta Bishaj June 24, 2008
Pages

59
Title of thesis

E�cient Leap of Faith Security with Host Identity Protocol
Professorship Professorship Code

Data Communications Software T-110
Supervisors

D. Sasu Tarkoma
Ph.D. Peter Sjödin

Instructor M.Sc. Miika Komu

Host Identity Protocol (HIP) protocol supports secure communication, end-host
mobility, as well as end-host multi-homing. Despite the bene�ts, communication
of HIP hosts with non-HIP hosts is de�cient in terms of latency. If HIP is to
be widely deployed, it needs to coexist smoothly with the normal TCP/IP stack.
A sudden shift of all hosts to HIP, a �ag day, is simply unrealistic. Users and
organizations deploy HIP only if it is fully backwards compatible. Therefore, HIP
hosts need to be able to communicate with both HIP as well as non-HIP peers.

HIP-based communication is di�erent from normal TCP/IP communication.
End-hosts perform a base exchange and optionally encrypt transport layer data.
In order for a HIP host to communicate with an unknown peer, it has to detect
whether the peer is HIP-capable. Currently, there is no deployed infrastructure
to support retrieval of such information, such as DNS or OpenDHT. Similarly
to many other protocols, HIP discovers support at peer hosts based on timeouts
which increase latency of communication. User experience degrades as a result.

With the aim of not diminishing user experience, this thesis presents a design and
implementation to detect HIP support at peer without timeouts. Our solution
is based on Leap of Faith (LoF) security. Other design alternatives are also
discussed, and the performance of the solution is measured and analyzed.
Keywords: Host Identity Protocol, Transport Layer, TCP, Leap of Faith Security

ii

Acknowledgements

I wish to thank both my supervisors, Professor (pro tem) Sasu Tarkoma and
Associate Professor Peter Sjödin. Many thanks go to my instructor at HIIT,
M.Sc. Miika Komu, for giving me the opportunity to work in the InfraHIP
project. Miika has been particularly patient and has helped me immensely
throughout the thesis project. I have discussed with him many ideas and
always received valuable feedback.

A special thank you goes for the NordSecMob programme and all the people
behind it. Without NordSecMob, this valuable experience would not have
been possible. I really appreciate the opportunity you gave me. In particular, I
would like to thank Professor Antti Ylä-Jääski, Planning o�cer Eija Kujanpää
and M.Sc. Laura Takkinen for their help and guidance during the studies.

I cannot thank my beloved family enough for their love and support, especially
my mother, who deserves a lot of credit. As do my sister and brother, Monda,
and all my close friends. This Master's Thesis is dedicated to my late father,
with gratitude and longing.

Helsinki, June 24, 2008

Blerta Bishaj

iii

Contents

Terms and Abbreviations vi

1 Introduction 1

2 Background 3

2.1 Options in the IP header . 3

2.1.1 IPv4 Options . 3

2.1.2 IPv6 Options . 4

2.2 Options in the TCP header 5

2.3 TCP SYN cookies . 6

2.4 General Overview of the Host Identity Protocol 7

2.4.1 Opportunistic Mode Implementation Architecture . . . 8

2.5 HIP DNS Extensions . 11

2.6 HIP NAT Traversal Extensions 13

2.7 General overview of the HIP �rewall 16

2.8 Introduction to Linux Raw Sockets 18

2.9 Introduction to the libipq Library 19

3 Implementation Architecture 21

3.1 Design Alternatives . 21

3.1.1 IP Options . 21

3.1.2 HIP DNS Extensions 22

3.1.3 Establishing Host Identity Protocol Opportunistic Mode
with HIT in TCP Option 22

iv

3.1.4 Optimized TCP Option Approach 23

3.1.5 Final Design . 23

3.2 Solution Architecture - I1 and TCP Packet with Option Simul-
taneously . 24

4 Results and Analysis 27

4.1 Performance measurements . 27

4.1.1 HTTP Transfers . 28

4.1.2 TCP Throughput . 29

4.1.3 TCP Handshake Latency at the Application Layer . . . 31

5 Future Work 34

5.1 Protocol Analysis . 34

5.1.1 Security Analysis . 34

5.1.2 Compatibility with RVS 36

5.1.3 NAT traversal . 37

5.2 Support only for TCP . 39

6 Conclusion 40

A Application Code Examples 45

A.1 Sending a raw TCP packet . 45

A.2 Reading packets with ipq . 50

v

Abbreviations

DSA Digital Signature Algorithm

DNS Domain Name System

DoS Denial of Service

ESP Encapsulating Security Payload

HIP Host Identity Protocol

HI Host Identi�er

HIPL HIP for Linux

HIT Host Identity Tag

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IPsec Internet Protocol security

LoF Leap of Faith

LSI Local Scope Identi�er

PKI Public Key Infrastructure

RSA Rivest-Shamir-Adleman

SA Security Association

SPI Security Parameter Index

vi

TCP Transport Control Protocol

RR Resource Records

vii

Chapter 1

Introduction

The TCP/IP suite was designed when host characteristics were di�erent from
today. As far as security is concerned, there are all sorts of security attacks on
the Internet nowadays. This was not the case at �rst, and was not re�ected on
TCP/IP because it was originally designed to operate in a relatively trusted
environment. Moreover, computers were singly-homed and their location �xed
[26] in the early days of Internet, due to lack of WLAN and portable equip-
ment. Hence, it was assumed that IP addresses served both as locators and
identi�ers for the hosts. TCP connections are bound to source and destina-
tion IP addresses. When the IP address of either of the communicating hosts
changes, the TCP connection breaks and communication stops.

The HIP protocol has emerged as a solution to meet the new requirements
for mobility and security [19, 24]. Essentially, HIP introduces a new layer
between the network and transport layers. The HIP layer takes the identity
role from the IP address. The separation of the identity and the location of the
host facilitates mobility and multi homing [26]. The HIP layer is below the
transport layer, hence connections can be bound to the identi�ers it provides.
As a result, TCP connections are no more bound to IP addresses, allowing
the host to change its location, while maintaining transport layer communi-
cation. Furthermore, HIP is above the network layer so that the connection
can be handled dynamically through any IP address, providing multi homing.
The feature that distinguishes HIP is that it embeds security into the stack,
allowing layers higher than the HIP layer to operate securely. HIP uses the
public key of a cryptographic public/private key pair as the identity of the
host. HIP hosts generate the public/private key pairs themselves, and use
their cryptographic identities to authenticate to each-other. They negotiate
symmetric encryption keys for IPSec using the Di�e-Hellman cryptographic
protocol. These keys secure the data communication between them.

1

CHAPTER 1. INTRODUCTION 2

There are several ways how HIP end-hosts can authenticate each other and
learn the HIs of each other. The Public Key Infrastructure (PKI) is an option,
but it has not been widely deployed in the current Internet. Leap of Faith
(LoF) is another possible solution, and SSH is a successful example of it. [12]
proposes that the LoF approach provides enough security for HIP mobility and
shows that it is backwards compatible, because their implementation can fall
back on non-HIP communication in the case that the peer does not support
HIP.

The fall back in [12] is based on timeouts. When the HIP Initiator has not
received a HIP reply during a certain amount of time, the peer is considered
not to support HIP, and the Initiator falls back on normal non-HIP commu-
nication. However, the problem with this approach is that the fall back time
is unacceptable for a normal user with a good quality connection. Therefore,
the HIP capability of the peer should be detected faster. Were a normal user
able to bene�t from the security and mobility HIP provides without making
negative trade-o�s in user experience, the deployment of HIP would be wider
and faster. The e�cient coexistence of HIP with the normal TCP/IP stack
increases the chances of HIP to be deployed into existing networks.

In this thesis, we explore the detection of HIP capability. Our design is an
extension of the opportunistic mode of HIP. The opportunistic mode allows
a HIP host to communicate with other HIP hosts whose HITs are unknown
because of the missing HIP infrastructure. Our design is based on receiving an
explicit negative acknowledgment when the peer does not support HIP, rather
than implicit timeouts. The HIP detection with our design o�ers a much faster
fall back on normal non-HIP communication if the peer does not support HIP.

Our design uses a new, unassigned TCP option for the detection of HIP support
because most middleboxes support them. The use of a TCP option has the
limitation that it does not support other transport protocols, even though HIP
is applicable to other transport layer protocols, such as UDP. Our solution is
bene�cial to applications running on HIP hosts that use TCP to communicate
with other hosts, for example, when a user uses a browser to open a web page
containing several links to non-HIP sites.

The organization of the thesis is as follows. Chapter 2 introduces topics and in-
formation related to this thesis. Following, Chapter 3 goes through several de-
sign alternatives and the implementation architecture. Chapter 4 presents the
results and analysis of measurements of the solution implementation. Chapter
5 outlines possible future work. Finally, Chapter 6 presents the conclusions of
this thesis.

Chapter 2

Background

This chapter provides background information that is required to understand
our proposed solution better. First, we take a quick look at the IP and TCP
protocols, focusing on the options �elds in the IP and TCP header and on
the TCP SYN cookies. Then, an overview of the HIP protocol follows, high-
lighting the aspects that are signi�cant to the goal of the thesis, such as the
opportunistic mode of operation. Then, we give an overview of HIP DNS ex-
tensions and HIP NAT traversal extensions. Next comes an overview of the
HIP �rewall as well as a brief introduction of Linux raw sockets and the libipq
library.

2.1 Options in the IP header

2.1.1 IPv4 Options

Internet Protocol (IP) [27] handles the transmission of datagrams from host to
host over an interconnected system of networks. IP does not provide reliability,
�ow control or sequencing. An IP datagram contains a header and data. The
IP header contains a �eld named Options. This �eld encompasses optional
additions to the header that are used for control functions, such as timestamps,
security, special routing, etc.

The format of an IP header option can be one of two cases. The simpler
one consists of a single octet of option type. Figure 2.1 illustrates the End
of Option List option, which marks the end of all options, as well as the No
Operation option which is occasionally used to mark the boundary between
two consecutive options. Both are single octet options.

The other kind of option contains an option-type octet, followed by an option-

3

CHAPTER 2. BACKGROUND 4

Type = 0

00000000 00000001

Type = 1

Figure 2.1: IPv4 End of Option List and No Operation options

length octet, followed by the option-data octets. The option-length octet
indicates the entire length of the three parts of the option. For example,
Figure 2.2 displays the Security option. Through this option, hosts can send
security, compartmentalization, handling restrictions, and closed user group
parameters.

Type = 130

10000010 00001011

Length = 11

Data

Figure 2.2: IPv4 Security option

2.1.2 IPv6 Options

IPv6 uses a di�erent mechanism for including optional information in a packet
[31]. This information is put into separate headers that are placed between
the IPv6 header and the upper layer header. There are several types of such
extension headers, and an IPv6 packet may contain zero, one or more of them.
Each header indicates what header is following. The �nal one indicates the
upper layer protocol. These headers are only examined at the destination, not
along the packet path; the Hop-by-Hop Options header is the only exception
to this. The IPv6 extension headers carry several �elds that are related to
the header type, as well as options. The options can be a single octet, or
type-length-value options.

Single octet options are illustrated in Figure 2.1 and Figure 2.2, with the IPv4
options of the previous subsection since they are identical to them. Figure 2.3
shows an example of the IPv6 extension headers.

CHAPTER 2. BACKGROUND 5

IPv6 header

Next header =
Routing

Routing header

Next header =
Fragment

Fragment header

Next header =
TCP

fragment of TCP
header + data

Figure 2.3: IPv6 extension headers

2.2 Options in the TCP header

The TCP protocol [28] is connection-oriented and end-to-end reliable. It is
a transport layer protocol and provides reliable communication between pairs
of processes in di�erent host computers. The two hosts communicate with
each-other exchanging TCP packets, each packet contains a header and data.
The TCP header contains the Options �eld. As the name suggests, this �eld
is optional. If present in the TCP header, the Options �eld resides at the end
of the header. The Options �eld is a multiple of 8 bits in length, and it is
included in the checksum calculation. A number has been assigned for each
option kind. However, there are also unassigned numbers, to leave space for
future options that might be added to TCP or for experimentations.

There are two categories of TCP options. The �rst category contains only one
octet that indicates the presence of the option kind. There are two special
options that belong to the �rst category. One serves to separate adjacent
options, the other one marks the end of all the options in the TCP header.
Figure 2.4 illustrates these options in the TCP header. They are the same as
the IPV4 options with the same names described in the previous section.

Kind = 0

00000000 00000001

Kind = 1

Figure 2.4: TCP End of Option List and No-Operation options

The second category of option contains an octet that indicates the option
kind, an octet for the option length, and the octets containing data. The
option length accounts for the whole length of the option: option kind, option
length, as well as option data. If the end of the �nal option is not at the end
of the current TCP header 32-bit word, then the rest of the 32-bit word is
padded. Figure 2.5 shows an option that belongs to the second category.

CHAPTER 2. BACKGROUND 6

Kind = 2

00000010 00000100

Length = 14

max segment size

Figure 2.5: TCP Maximum Segment Size option

Communicating peers use options in the TCP header for negotiation of pa-
rameters. The peers usually specify them during the handshake. One example
of TCP options is the Maximum Segment Size [28], which serves to commu-
nicate the maximum segment size that can be received at the hosts that sends
this option. The Maximum Segment Size option belongs to the second option
category; the option data indicates the allowed maximum segment size. It is
demonstrated in [7] that TCP options are widely accepted in the Internet.

2.3 TCP SYN cookies

The TCP protocol is vulnerable to attacks that are based on its speci�cation.
One of them is TCP SYN �ooding. The attacker attempts to consume the
resources at the server, causing DoS eventually. When a TCP client sends a
TCP SYN packet, the server makes an entry in a queue for connections in the
SYN_RECEIVED state. If the server is attacked with many such packets and
does not receive the ACK packets in response to the SYN_ACK packets it
has sent, the queue of connections in the SYN_RECEIVED state becomes full
eventually. Hence, there is no more space for new connections from legitimate
clients [22].

One of the ways to handle this attack is to increase the queue length so that it
can accommodate more connections that are in the SYN_RECEIVED state.
Another way is to decrease the amount of time that connections in the SYN_-
RECEIVED state wait in the queue for the TCP handshake to complete. Still,
an attack with a higher number of TCP SYN packets overcomes both these
remedies.

Another way to maintain the service to legitimate clients is to use TCP SYN
cookies. They are special values given to the initial TCP sequence number.
When the queue of connections in the SYN_RECEIVED state becomes full,
the server does not save the connections in this state in the queue any more,
but only sends out the SYN_ACK packets with the special sequence numbers.
When an ACK packets arrives, the server analyzes the packet and the sequence
number, extracting the necessary information for creating the TCP connection.

CHAPTER 2. BACKGROUND 7

This way, communication with legitimate clients is maintained, and DoS attack
is more di�cult to mount.

2.4 General Overview of the Host Identity Pro-

tocol

In this section, we take a closer view at HIP [9]. The HIP working group at
the Internet Engineering Task Force (IETF), as well as a HIP research group
at the Internet Research Task Force (IRTF) standardize it. HIP provides
security, mobility and end-host multi homing [12] and supports IPSec-based
integrity and con�dentiality protection for applications. At the time of writing
this thesis, there were three public HIP implementations: HIPL [1]; OpenHIP
[21]; HIP for inter.net Project [10].

As mentioned earlier in the introduction, HIP introduces the addition of a new
layer between the network and transport layers [30]. In HIP, the Host Identi�er
(HI) assumes the host identi�cation role from the network layer. There is no
central authority that assigns HIs to hosts, but they are unique statistically.
The connections of the transport layer are bound to host identi�ers instead
of to IP addresses. As a result, the e�ects of mobility and multi homing
on transport layer connections are reduced because the transport identities
remain the same.

Application

HIP APIIPv4 API IPv6 API

TCP

Ethernet

IPv6

UDP

HIP

IPv4

Application Layer

Layer

Layer

Layer

Layer

Layer

Socket

Transport

Link

Network

HIP

Figure 2.6: HIP layering and naming as presented in [14]

The HI is the public key of a cryptographic public/private key pair [30],
and it can be signi�cantly longer than what can �t in the socket structures.

CHAPTER 2. BACKGROUND 8

Therefore, shorter representations of HI are used by applications. The Host
Identity Tag (HIT) has the length of an IPv6 address, and the Local Scope
Identi�er (LSI) has the length of an IPv4 address. HIP can work with both
IPv4 and IPv6 addresses at the application and the network level. The position
HIP takes in the normal stack is depicted in Figure 2.6.

HIP allows applications to exchange encrypted or integrity protected data by
using IPSec [23]. Therefore, the communicating peers need to negotiate the
secret keys. During the four steps of the base exchange, the two hosts negotiate
the IPSec keys and algorithms that are used for protecting the communication.
The base exchange is illustrated in Figure 2.7.

I1: <HIT(I), HIT(R)>

R1: <HIT(I), HIT(R), challenge>

I2: <HIT(), HIT(), response, authentication>

R2: <HIT(I), HIT(R), authentication>

Responder (server)Initiator (client)

Figure 2.7: HIP base exchange

The packets in the base exchange are not encrypted but are signed with RSA
or DSA private keys to allow middlebox inspection [34]. The I1 message is
a trigger that indicates that a host wants to communicate using HIP. This
message contains the HIT of the peer when it is known. After receiving the
I1 packet, the Responder replies with an R1 packet which contains the HITs
of the Initiator and of the Responder. The R1 packet also contains a puzzle
for the Initiator to solve. The Initiator replies with the I2 packet that con-
tains the solution to the puzzle. The Responder replies with the R2 packet
after verifying the solution. The puzzle protects against certain kinds of DoS
attacks. During the base exchange, the peers establish a shared secret key for
IPSec using Di�e-Hellman.

2.4.1 Opportunistic Mode Implementation Architecture

The opportunistic mode of operation takes place when the Initiator of com-
munication does not know the HIT of the peer and when it operates in envi-

CHAPTER 2. BACKGROUND 9

ronments without HIP infrastructure support. In this case, the Initiator puts
NULL (all zeros) as the peer HIT in I1 [30]. The Initiator obtains the peer
HIT when the Responder sends its HIT in the R1 packet. The opportunistic
mode is based on LoF security. In LoF, a host contacts its peer without prior
knowledge of the peer identity. The host learns the peer identity in the �rst
contact and stores it to verify the peer identity when recontacting the peer.
LoF has been used successfully in protocols such as the Secure Shell (SSH) and
the Transport Layer Security (TLS). [12] argues that LoF security is enough
for mobility.

There are security issues related to the opportunistic mode. This mode makes
HIP vulnerable to replay attacks, since the Responder can reply with R1 pack-
ets that contain any HIT. Additionally, the opportunistic base exchange is
vulnerable to man-in-the-middle attacks. The reason is that the Initiator does
not have the peer HIT. The attacker acting as a man-in-the-middle has to be
in the path between the two peers in order to carry out the attack. It replies
to the I1 packet of the Initiator with an R1 packet that contains its own iden-
ti�er. The fall back approach of the opportunistic mode introduces another
risk, that of down-negotiation. A man-in-the-middle can drop I1 packets sent
by the Initiator and force the communication to fall back on plain TCP/IP.
Afterwards, the attacker can eavesdrop on the connection, assuming that it
is on the path of communication between the Initiator and the Responder.
Alternatively, it can create parallel TCP connections to the Initiator and the
Responder.

application

network

ipsec

transport

sockets

userspace

kernelspace

libc6

opp. library

hostname

IP

HIT

HIT

HIT

SPI

IP

HIP
 daemon

Figure 2.8: Layering and Software Module Organization

CHAPTER 2. BACKGROUND 10

In HIPL [1], the opportunistic mode is implemented as a user-space library in
Linux. Figure 2.8 depicts the hierarchy of layers in the opportunistic mode
and the position of the HIP daemon.

Figure 2.9 visualizes the opportunistic mode of operation from the HIP Ini-
tiator point of view using a �ow diagram, similarly as in [12]. The steps are
marked with numbers.

peer
hipd

local
hipd

local
client
app.

local
opplib

local
transport

local
ipsec

1. block
connect(IP)

2. request HIT

3. I1

4. R1

5. response HIT

6. connect(HIT)

7. IPSec

Figure 2.9: Flow Diagram of Opportunistic Base Exchange

In the �rst step, an application calls a socket function which sends data using
IP addresses, such as sendto() or connect(). The opportunistic library inter-
cepts this call, and then, in step 2, queries the HIP daemon for the HIT of
the peer. If the local HIPD does not have the peer HIT in store, it initiates
an opportunistic base exchange with the peer. In step 3, the HIPD sends the
I1 packet of the base exchange to the peer. When the peer responds with
the R1 message containing the peer HIT, in step 4, the HIP daemon forwards
the peer HIT to the opportunistic library, in step 5. After the local HIP dae-
mon supplies the peer HIT, the library unblocks the application. In the mean
time, the HIP daemons at both peers continue with the base exchange. The
Responder HIT is now available to the opportunistic library, which creates a
socket connection using the peer HIT in step 6. Next, the data proceeds from

CHAPTER 2. BACKGROUND 11

the transport layer to the IPSec layer in step 7. Finally, the IPSec layer sends
the data to the peer encapsulated within ESP.

2.5 HIP DNS Extensions

Currently, applications that need to communicate with a host translate a do-
main name into IP addresses. With HIP, the domain name needs to be trans-
lated into the HIT of the peer additionally because the transport layer uses
HITs for the connections. When the Initiator does not know the HIT of the
peer due to the lack of HIP infrastructure, it uses the opportunistic mode.
This mode introduces security risks such as the man-in-the-middle attack. To
prevent them, the Initiator must �rst obtain the HIT of the Responder. There-
fore, a need arises to translate domain names into HITs. It seems logical to
reuse the DNS system for retrieving HITs, but it requires the introduction
and implementation of a new Resource Record (RR) to accommodate the in-
formation we need to store. The HIP DNS extensions allow recording this
information in the DNS.

A DNS RR [18] without any extension has a top level format as illustrated
below Figure 2.10.

 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

NAME

TYPE

CLASS

TTL

RDLENGTH

RDATA

/

/ /

/

/

/

/

/

Figure 2.10: DNS RR Format

CHAPTER 2. BACKGROUND 12

The DNS RR format contains several �elds. NAME is the name of the node
for this RR. TYPE consists of two octets indicating the RR type. CLASS
also consists of two octets, it indicates the RR class. TTL contains a 32-bit
integer that speci�es how long to cache an RR before reconsulting the source
of the information. A zero value means no caching. RDATA is a �eld of
variable length that describes the source. Its length in octets is speci�ed in
the RDLENGTH �eld.

[25] speci�es a new resource record (RR) for the DNS, and its usage with HIP.
A HIP host would store its HI, HIT, and the domain names of its Rendezvous
Servers (RVS) in the DNS RR. The IP addresses of the host are not kept in the
DNS, since they can change frequently due to mobility and DNS propagates
changes slowly. Instead, HIP hosts publish the domain name(s) of the RVS in
the DNS. Meanwhile, the HIP host updates its set of addresses to the RVS. If
the host is not mobile and its IP address/es do not change frequently, it can
publish its own data on the HIP DNS instead of the RVS data.

The HIP DNS additional �elds are placed in the RDATA �eld of a HIP RR.
Figure 2.11 illustrates the HIP RR storage format.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

PK length

HIT

Public Key

RVSs

HIT length PK algorithm

Figure 2.11: HIP RR Storage Format

CHAPTER 2. BACKGROUND 13

All �elds except the RVSs �eld are required, the RVSs �eld is OPTIONAL.

From the security point of view, the DNS is vulnerable to threats described
in [8] in the absence of DNSSEC. DNS with HIP extensions is also vulnerable
to these threats. It is possible to use HIP to secure communication with DNS
servers but it is out of scope of this thesis.

2.6 HIP NAT Traversal Extensions

[15] de�nes Network Address Translator (NAT) traversal extensions for HIP.
The extensions make use of the Interactive Connectivity Establishment (ICE)
protocol to discover a path between two HIP hosts that are both behind NATs
in the worst case. With these extensions, even legacy applications can com-
municate with each other behind NATs or �rewalls.

A HIP Relay is di�erent from an RVS. The HIP RVSs deal with initial contact
and mobility when there is no NAT in the networks. A HIP Relay does the
same and solves NAT traversal problems. The HIP Relays can be used in
NATted or non-NATted networks. Both RVSs and HIP Relays forward control
packets, but the RVS forwards only the I1 packet of the base exchange to the
Responder. The remaining control packets, as well as data packets are sent
directly between the peers. On the other hand, the HIP Relays relay all HIP
control packets because NATs could drop them otherwise.

A HIP host registers with a Traversal Using Relay NAT (TURN) server [11]
�rst and then with the Relay server. A TURN server can be used for relaying
data tra�c between the peers. The registration with a HIP Relay is shown in
Figure 2.12

1. UDP(I1)

2. UDP(R1(REG_INFO(RELAY_UDP_HIP)))

3.UDP(I2(REG_REQ(RELAY_UDP_HIP)))

4. UDP(R2(REG_RES(RELAY_UDP_HIP), REG_FROM))

HIP
Relay
Server

HIP
Relay
Client

Figure 2.12: Example Registration to a HIP Relay

CHAPTER 2. BACKGROUND 14

The registration is a four step process in which the Initiator �rst initiates the
registration by sending an I1 packet. Then, in step 2, the Responder sends
an R1 packet with the list of services. The initiator selects the services to
register for and sends them in the I2 packet, in step 3. Finally, the Responder
acknowledges the registered services with the R2 packet in step 4.

After registration, a HIP Initiator can use the HIP Relay for sending HIP
control packets to HIP hosts that have registered with the relay. The relay
processes the packets accordingly and passes them over to HIP responders.
Instead of four steps, the base exchange would take place in eight steps because
the HIP Initiator sends the packets to the relay, which forwards them further
to the HIP Responder. The reply from the Responder goes through the relay
as well. The processing at the HIP Relay includes changing the source and
destination IP addresses and ports, and occasionally adding the RELAY_-
FROM parameter to packets.

[15] de�nes a new optional transform parameter type, NAT_TRANSFORM.
This parameter is negotiated in the R1 and I2 packets of the base exchange,
and it indicates that the host supports the extensions presented in [15]. This
parameter can be applied both to the registration with the HIP Relay, and to
the base exchange between HIP hosts.

1. UDP(I1)

2. UDP(R1(. . , NAT_TRANSFORM(list of transforms) , . .))

3.UDP(I2(. . , NAT_TRANSFORM(selected transform) , LOCATOR . .))

4. UDP(R2(. . , LOCATOR , . .))

ResponderInitiator

Figure 2.13: Negotiation of NAT Transforms between HIP hosts

Figure 2.13 illustrates the negotiation of the NAT transform type during the
base exchange when two hosts have direct communication.

Figure 2.14 shows the types of transformation that are currently supported.

The changes in the base exchange begin in the R1 message in step 2 which
contains the list of transforms that the Responder supports inside the NAT_-
TRANSFORM parameter. The Initiator replies with an I2 packet in step 3
that contains the NAT_TRANSFORM parameter with the transform type
the Initiator has chosen from the list the Responder sent.

CHAPTER 2. BACKGROUND 15

Transform
Type

Purpose

Reserved for future use

UDP encapsulated control and data traffic with
ICE−based connectivity tests using STUN messages

RESERVED

ICE−STUN−UDP

Figure 2.14: Locator Transformations

1. UDP(I1)

4. UDP(R1(.. ,
 NAT_TRANSFORM(
 list of transforms) , ..))

5.UDP(I2(.. ,NAT_TRANSFORM(
 selected transform) ,
 LOCATOR ..))

8. UDP(R2(.. , LOCATOR , ..))

2. UDP(I1)

3. UDP(R1(.. ,
 NAT_TRANSFORM(
 list of transforms) , ..))

6.UDP(I2(.. , NAT_TRANSFORM(
 selected transform) ,
 LOCATOR ..))

7. UDP(R2(.. , LOCATOR , ..))

HIP
Relay
Client

HIP
Relay

HIP
Relay
Server

Figure 2.15: Negotiation of NAT Transforms through a HIP Relay

Figure 2.15 illustrates the negotiation of the NAT_TRANSFORM parameter
between two hosts when they communicate through a HIP Relay.

After the base exchange, the communicating hosts perform connectivity tests
based on ICE to �nd a direct path for delivery of data tra�c. A direct path is
preferred to avoid using a TURN server for the data tra�c, since the TURN
server may become a point of network congestion. Figure 2.13 shows the
LOCATOR parameter exchanged in the I2 and R2 packets. This parameter
contains a list of all the ICE candidates. ICE candidates are transport ad-
dresses that have not been veri�ed yet for reachability using ICE. After the
base exchange, the locators are still in an unveri�ed state. The hosts test con-
nectivity using the candidates exchanged during the base exchange. If these
tests fail, then a TURN server is used for relaying the data tra�c between the

CHAPTER 2. BACKGROUND 16

hosts. Apart from the risk of congestion, the TURN server also increases the
round-trip delay.

The extensions in [15] do not elaborate on NAT traversal in the HIP oppor-
tunistic mode.

2.7 General overview of the HIP �rewall

The purpose of this section is to introduce a HIP �rewall implementation [34]
that is part of the HIPL [1] software bundle. This section also analyzes how
the security provided by HIP can contribute to �rewalls.

There are three types of �rewalls. First, there are �rewalls that are not aware
of HIP and provide no support for it. Second, there are �rewalls that are aware
of HIP, but are transparent to end-hosts. Third, there are �rewalls aware of
HIP that communicate with end-hosts. The initial implementation of the HIP
�rewall is of the second type. Firewalls are widely used for enforcing security
mechanisms. However, current �rewalls lack support for HIP tra�c [17], [16].

One of the design principles of HIP is to cooperate with middleboxes [30].
HIP provides integrity, con�dentiality and data authentication. Still, network
entities do have access to plain text HIP association �ow identi�ers to keep
track of HIP connections.

The main function of the HIP �rewall implementation is to �lter the tra�c
based on HIs or HITs. A �rewall can use HITs conveniently to enforce access
control. HIT can serve as the �ow identi�er for HIP tra�c. Middleboxes need
to �lter ESP data tra�c related to the HIP control tra�c as well. Therefore,
the �rewall needs to maintain state of the connection in order to �lter all HIP
tra�c.

HIP uses IPSec ESP to carry its data tra�c. Middleboxes can use the IP
addresses and the SPIs of peers to identify an ESP �ow. Initially, the mid-
dlebox can identify the data tra�c �ow identi�ers from the base exchange.
The Initiator delivers its initial SPI in the I2 packet and the Responder sends
its own initial SPI in the R2 packet. A HIP host can have more than one
network address, and the SPI used for a particular connection can change too.
Hence, a HIP �rewall has to map a HIP association against a varying set of
SPIs, as well as against potentially changing IP addresses. However, a HIP
host updates its peer about changes in network address and SPIs using udate
packets. Middleboxes need to monitor the update packets in order to track
the connection properly.

Figure 2.16 illustrates how a �rewall keeps state for a HIP connection and

CHAPTER 2. BACKGROUND 17

1. UDP(I1)

2. UDP(R1)

3.UDP(I2)

4. UDP(R2)

ResponderInitiator

SRC HIT
DST HIT
SRC IP
DST IP

Firewall

SRC HI
SRC SPI

DST HI

ESP data (SPI)

ESP data (SPI)

DST SPI

 tracked
 using
IPs and SPIs

Figure 2.16: Filtering of ESP data tra�c at HIP �rewall

how it uses it to �lter ESP data tra�c. This �gure does not depict update
packets and their processing. During the four steps of the base exchange, the
�rewall gathers information from the packets. Upon receiving I1 in step 1,
the �rewall registers the source and destination HITs as well as the source and
destination IP addresses. In steps 2 and 3, the �rewall registers the destination
and source HIs accordingly. In steps 3 and 4, the �rewall registers the source
and destination SPIs accordingly. When the �rewall detects an ESP packet, it
extracts the destination IP address from the encapsulating IP packet and the
SPI from the ESP header. With this information, the �rewall can associate
the packet with the HIP connection.

The opportunistic mode of HIP might be troublesome with HIP-enabled �re-
walls because the �rewall cannot determine the destination HIT from the I1
packet of an opportunistic base exchange and it might discard the packet.
This problem can be adjusted with �rewall rules that support the opportunis-
tic mode.

The opportunistic mode a�ects stateful �ltering as well. The destination HIT

CHAPTER 2. BACKGROUND 18

is missing from the I1 packet, but it is used as a �ow identi�er by �rewalls. A
�rewall that supports the opportunistic mode of HIP can use the destination
IP address in the �ow identi�er, until it intercepts the R1 packet from the
Responder and extracts the destination HIT from R1.

HIP signatures are visible to middleboxes. Therefore, middleboxes can au-
thenticate the validity of the control messages by validating the signatures.
This distinguishes HIP from other protocols. Tra�c authentication means
that the �rewall can detect invalid packets and keeps state information. This
way, middleboxes do not need to go into details of the HIP protocol. Instead,
middleboxes only verify the HIP packets.

HIP can encrypt transport layer communication. As a consequence, the HIP
�rewall cannot intercept transport layer tra�c. From the point of view of
organizations that want to inspect and �lter transport layer tra�c, this might
be considered a disadvantage. However, the ESP encryption is optional in
HIP, and it is possible to use only integrity protection.

The HIP �rewall [34] inspects for HIP and ESP tra�c. It captures, analyzes,
and decides whether to accept or drop incoming or outgoing packets, as well
as those being forwarded. The �rewall implementation in [34] uses the libipq
library to capture packets out of the stack and queue them into userspace
[3]. The HIP �rewall implements stateless packet �ltering, and stateful packet
�ltering. Stateless �ltering, as in all �rewalls of such sort, means �ltering on
the basis of packet properties or the network interfaces.

2.8 Introduction to Linux Raw Sockets

Raw sockets in Linux [2] bypass the kernel stack by allowing packet processing
in user space. When creating packets using raw sockets, the programmer is
responsible for creating packet headers. Raw sockets can be used for both
the IPv4 and IPv6 protocols. As for transport layer protocols, there is no
limitation. In fact, raw sockets can be used for new protocols, or protocols
that have no user interface, such as ICMP.

With raw sockets, it is possible to create IP packets or trasport layer packets,
depending on what socket options are enabled. Speci�cally, the socket option
that speci�es whether the programmer creates the IP header or the kernel does
is IP_HDRINCL. The following piece of code illustrates the function used to
turn this option on and o�:

setsockopt(sockfd, IPPROTO_IP, IP_HDRINCL, (char *)&on, sizeof(on))

CHAPTER 2. BACKGROUND 19

In this case, on is an integer that has the value 1. To turn this option o�, we
call the same function, as illustrated below:

setsockopt(sockfd, IPPROTO_IP, IP_HDRINCL, (char *)&off, sizeof(off))

where o� is an integer that has the value 0. section A.1 contains raw socket
output handling.

In Linux, only processes created by a root user, or having a special capability
are able to create and use raw sockets. Additionally, forging the source address
works only for IPv4, not IPv6. As for Windows, it lacks support for raw
sockets [20]. Windows XP Service Pack 2 (SP2) and Windows Vista restrict
the ability to send tra�c over raw sockets in several ways. For example, raw
sockets cannot send TCP data or spoofed UDP packets. Furthermore, the
bind function cannot be called with a raw socket.

2.9 Introduction to the libipq Library

The HIP �rewall uses the libipq library [3] for iptables userspace packet queu-
ing. Net�lter [4] supports queuing packets out of the stack into userspace, as
well as receiving the packets back into the kernel with a verdict that speci�es
whether the packet is to be dropped or accepted. Packet modi�cation can also
take place before packet re injection back into the kernel.

A kernel module called a queue handler registers with net�lter in order to
perform the passing of packets between kernel and userspace. ip_queue is
the standard queue handler for IPv4, and ip6_queue is the standard queue
handler for IPv6. After loading the ip_queue and/or the ip6_queue modules,
iptables rules with the QUEUE target queue IPv4 and/or IPv6 packets for
userspace processing, for example:

iptables -I INPUT -p 6 -j QUEUE

The libipq library is an API for communicating with the ip_queue and ip6_-
queue. Following is an example of reading a packet into a bu�er with a queue
handle:

status = ipq_read(handle, buffer, BUFSIZE, 0);

The code below illustrates how to obtain a packet message from the data the
bu�er contains. An application can access the contents of the packet through
the ipq_packet_msg_t structure.

CHAPTER 2. BACKGROUND 20

ipq_packet_msg_t *m = ipq_get_packet(buffer);

The following code illustrates further the usage of the library by setting a
verdict on a packet. In this case, the verdict is to drop the packet:

ipq_set_verdict(handle, m->packet_id, NF_DROP, 0, NULL);

section A.2 contains a full example of libipq usage for reading queued packets.

Chapter 3

Implementation Architecture

The problem to solve is to design and implement HIP capability detection
to environments without HIP infrastructure. The goal is to make HIP hosts
interact at the same time with HIP and non-HIP hosts e�ciently. In this
chapter, we �rst present several alternatives we considered, as well as the
solution we decided to implement.

3.1 Design Alternatives

This section discusses four di�erent approaches to HIP detection. The design
alternatives describe the bene�ts and drawbacks of each alternative, which
helps us justify our selected approach. For each design alternative not chosen
as the �nal solution, we argue why we did not choose it.

The current solution to the HIP detection problem uses timeouts in the op-
portunistic mode. In the opportunistic mode of HIP, the Initiator sends to
the peer an I1 packet that lacks the peer HIT. If there is no reply to I1 within
an amount of time, the Initiator assumes that the peer does not support HIP.
Timeouts are widely used by many other protocols for detecting protocol sup-
port at peer. However, timeouts a�ect usability since the user has to wait for
an amount of time before knowing whether the connection is successful or not.

3.1.1 IP Options

At �rst, we considered IP options for the detection. The Options �eld is an
optional one in the IPv4 header [27]. The IPv4 speci�cation de�nes that
IP options must be implemented by all IP modules (hosts and gateways).
It states that the presence of IP options in datagrams is optional, but the

21

CHAPTER 3. IMPLEMENTATION ARCHITECTURE 22

implementation of receiving datagrams with the Options �eld is mandatory.
However, [32] demonstrates that IPv4 options are not well supported in the
Internet. Approximately, half of Internet paths drop IPv4 packets with options
according to [32]. Therefore, we decided not to employ IPv4 options as the
solution for HIP detection.

We presented a short overview of IPv6 options in subsection 2.1.2. IPv6
options are not widely deployed yet. Therefore, we did not consider them as
an eligible solution.

The advantages of detecting HIP through IPv4 or IPv6 are that it would solve
the HIP detection problem at the network layer, and we would not need to
handle transport layer protocols separately. Even so, if the problem were solved
at the network layer, it would mean implementation for both IP versions.

3.1.2 HIP DNS Extensions

HIP DNS RRs are de�ned in [25]. In this RR, a HIP node stores its HI, HIT,
as well as the domain names of its RVSs. The host keeps the RVS updated
with its current list of the IP addresses. Instead of the domain names of the
RVSs, the RRs can also contain the addresses of the host itself.

This approach is not as vulnerable to man-in-the-middle attacks as the op-
portunistic mode is. However, it requires that DNS be populated with HITs
and that the communication to DNS be secured with, for example, HIP or
DNSSEC [29]. Such infrastructure is not yet deployed. Therefore, we did not
choose this as a solution.

3.1.3 Establishing Host Identity Protocol Opportunistic

Mode with HIT in TCP Option

Another design alternative is [13]. It solves the latency issue by creating
a TCP connection to be used in case the peer does not support HIP. This
solution is an extension to the HIP opportunistic mode. [13] proposes that
instead of the I1 packet, the initiating host sends a TCP packet that contains
the local HIT inside a TCP header option. If the peer supports HIP, it extracts
the HIT from the TCP options and replies with the R1 message. Otherwise,
it replies to the TCP SYN packet with a TCP SYN_ACK packet. This way,
the TCP connection is established without additional timeouts.

Unlike IP options, TCP options are generally supported throughout the In-
ternet. [6] presents the results of tests on TCP connections with assigned
TCP options (the Timestamp options) or an unassigned TCP option. In both

CHAPTER 3. IMPLEMENTATION ARCHITECTURE 23

scenarios, the connection failure rate was only 0.2%.

The �rst issue with this design alternative is that it is not backward compatible
with hosts that use the HIP base exchange. The second issue is that it does
not work with NATs. If the Initiator is behind a NAT, the incoming R1 packet
will be dropped, because it appears as a connection initiated from outside the
NAT.

3.1.4 Optimized TCP Option Approach

The NAT traversal problems of the previous design alternative led us to en-
hance the opportunistic mode. This design alternative uses a TCP packet
with an unassigned option, similarly to the previous alternative. However, the
Initiator does not send the TCP packet as part of the base exchange in this
case. Before triggering the base exchange, the local host sends a TCP SYN
packet with a special option to the peer. If the peer is a HIP host, it replies
with a TCP SYN_ACK packet that contains the same option. If the peer is
not a HIP host, it replies with a TCP SYN_ACK packet without the option
because it does not understand it.

The local host analyzes whether incoming TCP SYN_ACK packets contain
the special option or not. If it receives a TCP SYN_ACK packet with the
option, it determines that the peer is a HIP host and the local host initiates
the HIP base exchange. If the packet does not contain the special option, the
local host concludes that the peer is not a HIP host and the local host falls
back on non-HIP communication immediately.

This design alternative has the drawback that normal HIP hosts that do not
implement this solution appear as non-HIP hosts. Like other non-HIP hosts,
legacy HIP hosts do not recognize the new option. These hosts receive �rst
the TCP SYN packet with the option to which the TCP service at the port
replies with a TCP SYN_ACK packet lacking the option. This identi�es them
as non-HIP hosts.

3.1.5 Final Design

We chose the design alternative described in section 3.2 because it was the
optimal solution. This design alternative is similar to the one presented in
the previous subsection. The local HIP host sends a TCP SYN packet with
a special option to the peer. The di�erence is that, in this case, it also sends
the I1 packet to the peer. If the peer is a HIP host, it drops the TCP SYN
packet with the option and replies only with an R1 packet. This way, the HIP

CHAPTER 3. IMPLEMENTATION ARCHITECTURE 24

base-exchange takes place, and ESP data follow afterwards.

When the peer is not a HIP host, it does not understand the I1 packet and
replies only to the TCP SYN packet with a TCP SYN_ACK one excluding the
option. The local host �lters this packet and concludes that the peer does not
support HIP and unblocks the application that initiated the connection. Simi-
larly to the previous design alternative, this approach supports communication
with non-HIP hosts without extra timeouts.

The bene�t of this solution is that when the peer is a HIP-enabled host, there
is no TCP round trip delay for the detection, since the Initiator sends the I1
packet from the beginning. This design alternative has also the advantage that
legacy HIP hosts implementing only the base exchange are correctly identi�ed
as HIP hosts. In this solution, the Initiator sends the I1 message ahead of
the TCP SYN packet with the option, which means that it is receives the
I2 packet as a reply earlier than the TCP SYN_ACK lacking the option at
the local host. Therefore, HIP hosts that do not support our extension are
correctly identi�ed as HIP hosts, in contrast to the previous design alternative.

3.2 Solution Architecture - I1 and TCP Packet

with Option Simultaneously

This section describes implementation details of our solution. The implemen-
tation of our changes amounts to 634 lines of code. Figure 3.1 depicts the case
when the peer is not HIP capable, while Figure 3.2 depicts the case when the
peer is HIP capable. In both cases, there is a client application that initiates
the communication. It calls connect(IP), which is blocked by the opportunistic
library as shown in step 1 of both �gures. The opportunistic library requests
the matching HIT from the HIP daemon, as seen in step 2 of both pictures.
The assumption is that the local host cannot map the IP to the peer HIT due
to lack of an infrastructure for retrieval of such information. In step 3 and 4
of both �gures, the local HIP daemon sends an I1 packet to the peer, as well
as a TCP SYN packet with the special option. It sends the I1 packet �rst,
and then the TCP one.

If the peer is not a HIP host, it will not reply to the I1 message because it does
not understand it. Instead, it replies to the TCP SYN_I1 packet with a normal
TCP SYN_ACK one lacking the option, as shown in step 5 of Figure 3.1.

The local �rewall �lters this packet and detects that it does not contain the
special option. Thus, it infers that the peer does not support HIP. Therefore,
it sends a message to the local HIP daemon requesting it to unblock the ap-

CHAPTER 3. IMPLEMENTATION ARCHITECTURE 25

local
hipd

local
client
app.

local
opplib

local
transport

1. block
connect(IP)

2. request HIT

10. normal TCP connection

peer TCP
service

4. TCP SYN_I1

local
firewall

5. TCP SYN_ACK
6. tell hipd
 to unblock
 app

7. tell opplib to unblock app.

8. unblock
 connect(IP)

9. connect(IP)

3. I1 (no answer to it)

Figure 3.1: Flow Diagram of HIP detection and Fallback with non-HIP peer

plication, in step 6. The local HIP daemon asks the opportunistic library to
unblock the application in step 7. The opportunistic library does this in step
8. In step 9, the connect call connect(IP) to the transport layer is unblocked,
and the transport layer initiates a TCP connection with the non-HIP peer.

If the peer is a HIP host that supports our solution Figure 3.2, its �rewall will
drop any incoming TCP SYN_I1 packet. The peer HIP daemon replies to the
I1 packet with an R1, in step 5. When the local HIP daemon receives the R1,
it sends the HIT of the Responder to the opportunistic library, in step 6, and
continues the base exchange with the peer. The opportunistic library makes
a connect(HIT) call that shims the connect(IP) call that the application had
done in step 7. Afterwards, application data �ows from the transport layer
to IPSec processing, where it is ESP-encapsulated and �nally transmitted to
network.

Our solution is valid only for TCP tra�c. The reason is that the design
needs a service at the peer that listens on a transport port and replies to
the packet. We use a special option for the detection in the case of the TCP
protocol. However, other transport protocols lack properties for this detection.

CHAPTER 3. IMPLEMENTATION ARCHITECTURE 26

peer
hipd

local
hipd

local
client
app.

local
opplib

local
transport

local
ipsec

1. block
connect(IP)

2. request HIT

5. R1

6. response HIT

7. connect(HIT)

8. IPSec

peer TCP
service

4. TCP SYN_I1 (is dropped)

local
firewall

peer
firewall

3. I1

Figure 3.2: Flow Diagram of HIP detection with HIP peer

For example, the UDP protocol does not have a standard handshake for all
application protocols, in which to specify options.

IP header options are not well supported in the Internet. Therefore, peer HIP
detection cannot be solved at the network layer. Going one layer up to the
transport one has the cost that each protocol needs to be tackled individually.
However, the TCP protocol accounts for the majority of the Internet tra�c
and we consider to have solved a major part of the problem.

Chapter 4

Results and Analysis

4.1 Performance measurements

In this section, we present and analyze measurements of several scenarios.
The focus of our measurements is the latency and the throughput in non-HIP
and in HIP communication when our extension is used. Our solution was
implemented as part of the HIPL project, release 1.0.4.

We tested latency in HTTP transfers, TCP throughput using Iperf version
2.0.2 [5] (the TCP/UDP Bandwidth Measurement Tool), and TCP hand-
shake latency at the application layer. For the measurements, we used two
computers. They were connected to each-other with an isolated switch. Both
machines were running in multiuser mode and each had a 100 Mbit NIC.
Following are the con�guration details of both machines.

Initiator:
Intel(R) Pentium(R) 4 CPU 3.00GHz
Linux info 2.6.22.5.hipl #1 SMP PREEMPT Sun Nov 18 21:24:29 CET 2007
i686 GNU/Linux
Debian version 4.0
RAM capacity - 1034916 B
NIC - 0b:02.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-
8139/8139C/8139C+ (rev 10)

Responder:
Intel(R) Pentium(R) 4 CPU 3.00GHz
Linux blerta-pc 2.6.22.5.hipl #1 SMP PREEMPT Fri Feb 8 10:20:16 EET
2008 i686 GNU/Linux
Debian version 4.0
RAM capacity - 1034144 B

27

CHAPTER 4. RESULTS AND ANALYSIS 28

NIC - 02:01.0 Ethernet controller: Intel Corporation 82547EI Gigabit Ethernet
Controller

We measured various aspects of the overhead caused by the extension we im-
plemented. The results of tests and measurements for each examined aspect
lie in a separate subsection. For each subsection, there are these communica-
tion scenarios: plain TCP/IP, standard HIP, HIP negative detection, and HIP
positive detection. Plain TCP/IP means that there is non-HIP communica-
tion. Standard HIP means HIP communication between HIP hosts without
HIP detection. HIP negative detection is the scenario in which the Initiator
is a HIP host and supports our solution. It attempts communication with a
non-HIP host and detects lack of HIP support at the peer. Therefore, there
is TCP/IP communication afterwards. HIP positive detection refers to the
scenario in which both the Initiator and the Responder are HIP hosts sup-
porting our extension. The Initiator detects the HIP support at the peer and
communicates with it using HIP.

Whenever the hosts in our tests use HIP, they use RSA keys for encryption.
The public RSA keys are 216 bytes long for both machines. We repeated the
measurements 40 times for each scenario and then calculated the average values
and the standard deviation. Standard deviation values are shown in each bar
of the charts in gray color. The data in the all the charts are depicted in
logarithmic scale to bring out the di�erences in the values better.

4.1.1 HTTP Transfers

We analyzed HTTP transfers in the following cases: plain TCP/IP, standard
HIP implementation, HIP negative detection, and HIP positive detection. To
take the measurements, we tcpdumped all the tra�c between the two hosts
in every test of each scenario. Afterwards, we calculated the average and
the standard deviation of the di�erence in time between the last and the �rst
packets of each output of tcpdumped HTTP transfer. The y axes of the charts
display the latency in milliseconds. The data was grouped into two charts to
distinguish better between HIP and non-HIP communication.

The chart on the left shows the measurement data for the cases when peers
do not communicate in a HIP way. The chart on the right displays data for
HIP communication. The y axis in each of these charts displays the latency
of the communication as observed by tcpdump Figure 4.1.

In the �rst chart, both bars display data for non-HIP communication. The
bar for HIP negative detection shows a higher latency value due to detection
of lack of HIP support at the peer. The time overhead can be broken down
into additional processing, as well as round-trip delay of the TCP response

CHAPTER 4. RESULTS AND ANALYSIS 29

 1

 10

 100

plain
 TCP/IP

HIP negative
 detection

m
s

HTTP data

TCP handshake latency
standard deviation

 1

 10

 100

standard
HIP

HIP positive
 detection

m
s

HTTP data

TCP handshake latency
standard deviation

Figure 4.1: HTTP

from the peer. The additional time for HIP negative detection as compared
to plain TCP/IP is 6.5 ms.

The second chart shows the values for HIP communication. The bar on the
right shows a higher value since it contains the time consumed for HIP positive
detection. The di�erence of the values is 1.7 ms.

We notice a smaller di�erence of values in the chart on the right. This was to
be expected because HIP negative detection includes a TCP round trip delay.
In HIP positive detection, HIP communication is initiated in parallel with HIP
detection and introduces no extra round trip delay.

4.1.2 TCP Throughput

We made the measurements for TCP throughput using the Iperf tool. Iperf
[5] measures the throughput of TCP and UDP. It also reports datagram
loss, bandwidth, and jitter. These scenarios are analyzed with Iperf: plain
TCP/IP, standard HIP implementation, HIP negative detection, and HIP pos-
itive detection. The scenarios are further separated into two charts based on
whether there is HIP-based communication or not. The y axis in each of these
charts displays the throughput of the communication in Mbits/sec. The TCP

CHAPTER 4. RESULTS AND ANALYSIS 30

throughput values were obtained from the Iperf output. Figure 4.2 shows the
average values and the standard deviation.

 1

 10

 100

plain
 TCP/IP

HIP negative
 detection

T
C

P
 t

h
ro

u
g
h
p
u
t

in
 M

b
it

s/
se

c

Iperf data

throughput
standard deviation

 1

 10

 100

standard
HIP

HIP positive
 detection

T
C

P
 t

h
ro

u
g
h
p
u
t

in
 M

b
it

s/
se

c

Iperf data

throughput
standard deviation

Figure 4.2: Iperf

As can be seen from comparing the charts in Figure 4.2, IPSec encryption in
general reduces the throughput of the communication. The bars on the second
chart have values that are lower than those in the �rst chart. Additionally, we
notice that the throughput values when HIP detection takes place are smaller
than when it does not. Namely, the bars on the right in each chart of Figure 4.2
have lower values than the respective bars on the left. This is expected since
detection introduces processing overhead as well as TCP round trip delay in
the case of HIP negative detection.

The chart on the left depicts the cases for non-HIP communication. The
di�erence between the two throughput values is 5.25 Mbits/sec.

The chart on the right illustrates the case when HIP communication takes
place, causing a smaller throughput value for both bars because of IPSec.
When HIP positive detection takes place, the TCP throughput decreases even
further. The actual di�erence in throughput is 1.17 Mbits/sec.

CHAPTER 4. RESULTS AND ANALYSIS 31

4.1.3 TCP Handshake Latency at the Application Layer

Wemeasured latency as observed at the application layer and tcpdump latency.
The measurements were in the following scenarios: plain TCP/IP, standard
HIP implementation, HIP negative detection, and HIP positive detection. The
y axes of the charts display the latency in milliseconds.

The �rst �gure, Figure 4.3, contains a comparative view of the overall latency
at the application layer and the latency at the network layer calculated with
tcpdump. The purpose of this �gure is to display the additional processing
that takes place between the transport and the application layer.

In Figure 4.3, the red bars show the latency measured from the tcpdump of the
communication. We measured it as the time di�erence between the timestamp
of the last and the timestamp of the �rst tcpdumped packets. The green bars
indicate the latency as seen at the application layer. We calculated this value
as the sum of the latency for the creation of the connection with the latency
of data exchange, both measured at the application layer.

 1

 10

 100

plain
TCP/IP

HIP negative
detection

m
s

TCP latency

TCP handshake latency
connect() latency

standard deviation

 1

 10

 100

standard
HIP

HIP positive
detection

m
s

TCP latency

TCP handshake latency
connect() latency

standard deviation

Figure 4.3: TCP handshake time

Since tcpdump measures latency at lower layers, we expect application layer
latency values to be higher due to layer processing overhead and context
switches. The values were measured at the Initiator.

The chart on the left Figure 4.3 shows a very small value when the commu-

CHAPTER 4. RESULTS AND ANALYSIS 32

nication is plain TCP/IP. The di�erence between the values of the two bars
is smaller than a millisecond. When HIP negative detection takes place, this
di�erence is 2.7 ms.

The chart on the right Figure 4.3 shows a di�erence of 2.4 ms in the case of
HIP communication. When HIP positive detection takes place, the di�erence
of the values is 2 ms.

As shown in Figure 4.3, processing above the network layer does not cause
considerable latency. The di�erences in latency between the transport layer,
and the application layer timers appear to be very close to each other. Indeed,
this value is very small for plain TCP/IP. Starting from HIP negative detection,
these di�erences in milliseconds are 2.7 ms, 2.5 ms, and 2 ms.

Further, we notice that HIP positive detection takes less time than HIP neg-
ative detection. This result is consistent with the results from the previous
tests. The explanation for this is the same as the one we have already outlined
in the previous subsections. Basically, HIP positive detection takes more time
than HIP negative detection in our solution.

 1

 10

 100

plain
 TCP/IP

HIP negative
 detection

m
s

Connection creation latency

TCP handshake latency
standard deviation

 1

 10

 100

standard
HIP

HIP positive
 detection

m
s

Connection creation latency

TCP handshake latency
standard deviation

Figure 4.4: TCP socket creation latency

The purpose of the two charts in Figure 4.4 is to use the evaluation of the
latency at the application layer for a better estimation of the cost of HIP pos-
itive and negative detection. In subsection 4.1.1, we calculated the processing

CHAPTER 4. RESULTS AND ANALYSIS 33

overhead in relation to the output of tcpdump. This time, we make an estima-
tion from the point of view of the application layer. For the following �gure,
we used only the time used by the application to create a connection to the
peer socket. Whenever HIP communication is attempted and/or established,
HIP detection takes place before the creation of the connection to the socket.
Therefore, we have the HIP detection time included in the measurements. Ad-
ditionally, we do not take into account the timing of the data exchange in the
connections since what is measured is only the time of connection creation.
This makes our estimations of the overhead of HIP detection more accurate.
The reason is that adding data exchange measurements contributes to making
the calculations more inaccurate.

The �rst chart in Figure 4.4 displays the values we measured for non-HIP
communication. The TCP connection creation takes more time when HIP
negative detection takes place. The di�erence in time is 4.4 ms.

In the second chart, HIP-encrypted communication increases the values of
latency signi�cantly due to IPSec processing. The reason is that even the
packets that create the TCP connection are encrypted. The di�erence in time
for HIP positive detection is 1.6 ms.

This result also shows that the time di�erence for HIP positive detection in the
chart on the right is higher than the time di�erence for HIP negative detection
in the chart on the left. Still, both values seem to be relatively small.

Chapter 5

Future Work

This chapter analyzes the compatibility of our HIP extension with various
parts of the HIP infrastructure. Here, we also investigate into how our solution
can be extended further to support other transport layer protocols.

5.1 Protocol Analysis

5.1.1 Security Analysis

Our solution extends the opportunistic mode of the HIPL implementation. As
a result, our design is also vulnerable to man-in-the-middle and replay attacks
of the opportunistic mode, because an attacker that is in the path between the
hosts can capture the I1 packet and send its own R1 packet as a response. Our
solution also inherits the risk of replay attacks from the opportunistic mode
since the Responder can reply with R1 packets that contain any HIT.

On-Path attacks

On-path attacks require the attacker to be in the path of communication be-
tween the hosts. Therefore, they are not easy to implement. If the peer is not
a HIP host, dropping the I1 packet sent by the Initiator has no e�ect, since
the Responder would not understand it or respond to it in any case. Dropping
the TCP SYN_I1 packet causes DoS attack. When an attacker drops the
TCP SYN_I1 packet sent to a HIP host that implements our extension, it has
no e�ect because the Responder discards the packet anyway. If the I1 packet
is discarded, down negotiation takes place because our solution inherits the
timeout mechanism from the opportunistic mode. After not receiving either

34

CHAPTER 5. FUTURE WORK 35

a TCP or an R1 response from the peer for an amount of time, the Initiator
identi�es the peer as a non-HIP host and falls back on plain TCP/IP commu-
nication. To cause down negotiation, a man-in-the-middle needs to drop only
the I1 packet when the peer is a legacy HIP host because legacy HIP hosts
do not drop TCP SYN_I1 packets. If down negotiation is successful, the at-
tacker can either eavesdrop on the connection or impersonate the Responder
by sending a TCP SYN_ACK packet without the option or forging the HIT
in R1.

O�-Path attacks

In our solution, the Initiator examines incoming TCP packets to conclude
about HIP support at the peer. If an o�-path attacker sends spoofed TCP
packets, it might compromise the HIP communications. This introduces two
security risks that are explained in the following paragraphs.

First, an o�-path attacker can �ood any HIP host that implements our solution
with TCP SYN_ACK packets because these packets require more processing
at the HIP �rewall. This way, the netlink bu�ers can become congested causing
the HIP �rewall application to fail eventually. To boost the HIP �rewall
performance, and to minimize the consequences of such attacks, we use threads
to avoid the congestion of the bu�er queue. Additionally, attackers can use
spoofed TCP SYN_ACK packets to overpopulate the HIP daemon state tables
with data about IP addresses that the local host has not even tried to connect
with. An overpopulated database might become a burden for the memory. To
protect against this, the daemon implementation should keep track of the IP
addresses where it sends opportunistic I1 packets and discard R1 packets from
unknown IP addresses.

Second, o�-path attackers sending spoofed TCP SYN_ACK packets that con-
tain the source IP addresses of HIP hosts can compromise peer support infor-
mation in the HIP daemon. This causes down-negotiation because the HIP
daemon wrongly identi�es the HIP-hosts at those IP addresses as non-HIP
hosts.

These attacks are di�cult to implement in practice. Additionally, an attacker
cannot launch these attacks from outside a network if the network is protected
with a �rewall, because the TCP SYN_ACK packets would not be allowed to
pass.

TCP SYN cookies is a mechanism to protect against TCP SYN �ooding at-
tacks aimed at exhausting the queue resources of TCP servers, section 2.3.
This defense consists in assigning special values to the sequence numbers of
the TCP SYN_ACK packets instead of creating and adding a new entry to

CHAPTER 5. FUTURE WORK 36

the SYN queue of the TCP server. When TCP ACK packets arrive, the TCP
server checks the validity of the next required sequence number in the packet.
If it is valid, the server builds the SYN queue entry based on the received
packet, and then creates the TCP connection.

Even though SYN cookies are generally used to protect TCP SYN packet
receivers, we can use the same mechanism to protect TCP SYN_ACK packet
receivers instead. The following describes future work how the mechanism used
in TCP SYN cookies can be used to protect HIP Initiators that support our
extension. It is not implemented in our extension. The HIP Initiator uses TCP
SYN_ACK packets as indicators of lack of peer HIP support. Therefore, the
HIP Initiator needs protection from bogus TCP SYN_ACK packets. To avoid
such attacks, the Initiator can attach special values to the sequence numbers
of the TCP SYN_I1 packets that it sends out. When a TCP SYN_ACK
packet arrives, the Initiator checks its validity by checking the next expected
sequence number in it. This defense can be combined with the HIP Initiator
remembering TCP SYN_I1 packets sent out recently. This way, the HIP
Initiator could discard directly TCP SYN_ACK packets for which there is no
matching, recent entry of an outgoing TCP SYN_I1 packet. Additionally, the
HIP Initiator can make checks before changing the database with information
for other hosts. For example, the Initiator can check that when a TCP SYN_-
ACK packet arrives from a peer, there is a pending request for connection to
that peer. Moreover, the HIP host can disallow down-grading of peer HIP
support to plain TCP/IP.

5.1.2 Compatibility with RVS

In this section, we assume the deployment of the HIP DNS infrastructure.
The HIP DNS RRs contain the HI, the HIT, and the domain names of the
RVSs of the HIP host or the address of the peer itself. Assuming that there
is no attack on the DNS, an Initiator can �nd out whether a peer supports
HIP from the reply to its HIP DNS query. The following discussion assumes
that both the Initiator and the Responder have publicly reachable addresses.
Otherwise, neither the RVS forwarding of I1 packets to the Responder, nor
sending TCP SYN packets from the Initiator to the Responder is possible due
to NAT restrictions [33].

When the Initiator �nds the peer HIP data in the DNS, it knows that the peer
supports HIP. The Initiator sends the I1 and the TCP SYN_I1 packet to the
Responder or to the RVS depending on the result of the HIP DNS query. If
the packets are sent directly to the Receiver, it will drop the TCP SYN_I1
packet and reply to I1. Otherwise, if the packets are sent to the RVS, the

CHAPTER 5. FUTURE WORK 37

RVS forwards only the I1 packet to the Responder. This does not harm HIP
detection because the Initiator knows already that the peer supports HIP.

It is possible that the HIP Initiator does not �nd HIP related identi�er infor-
mation in the DNS for the peer, but only the peer IP. In this case, the Initiator
can use the opportunistic mode with our extension when communicating di-
rectly with the peer.

5.1.3 NAT traversal

In order to work, our solution needs to be able to be compatible with NATs.
[15] describes HIP extensions for NAT traversal, but very little is said about
NAT traversal in the opportunistic mode. HIP extensions for NAT traversal
have to be further extended to support the opportunistic mode, as well as our
solution.

Peer HIT is known

Let us assume that we have two hosts that support standard HIP. Both hosts
are behind NATs, and we have the HIP Relay infrastructure in place. If the
Initiator has the peer HIT, then it can communicate with the peer through
the HIP Relay and later through the TURN server or directly with each other
after successful ICE connectivity tests. Both hosts have initially registered
with the TURN server and with the HIP Relay. This is the case that HIP
extensions for NAT traversal have already handled and solved.

NAT traversal and the Opportunistic Mode

Let us now examine the opportunistic mode of the current HIP implementation
with the NAT traversal infrastructure. We assume there are two HIP hosts
supporting the standard HIP positioned behind NATs. The Initiator does not
know the HIT of the Responder and cannot initiate communication through
the relay in the currently standardized way. The Initiator has to obtain the
peer IP address in advance. Additionally, if the HIP Relay serves multiple
Responders using the same address, the Initiator needs to obtain the peer
port number. The Initiator cannot start a connection with the Responder
directly, since the peer is behind NAT. Therefore, HIP NAT traversal needs
to support a base exchange that starts with an opportunistic I1 packet that
contains the IP address and port through which to contact the peer. Then, the
HIP Relay needs to check if a HIP host with that data has already registered
with the relay. If the other peer has not already registered, the HIP relay is

CHAPTER 5. FUTURE WORK 38

unable to initiate a connection with the peer from outside the NAT. If the
peer is registered, the relay should forward the I1 packet after removing the
IP-port parameter from it and after replacing the empty peer HIT with the
one it has mapped using the IP-port parameter. This way, the communication
appears as a normal base exchange to the Responder.

The HIP Relay should be extended to support the HIP opportunistic mode
as described in the previous paragraph. These changes should be part of the
relay extensions to support our solution because we use the opportunistic I1
packet as well. Figure 5.1 illustrates how the HIP Relay can be extended to
support the opportunistic base exchange.

1. UDP(I1, empty HIT,
 peer IP−port parameter)

4. UDP(R1(RELAY_TO))

5.UDP(I2(LOCATOR))

HIP
Responder

HIP
Initiator

2. UDP(I1(peer_HIT , RELAY_FROM)

HIP
Relay

3. UDP(R1(RELAY_TO))

6. UDP(I2(LOCATOR , RELAY_FROM))

7. UDP(R2(LOCATOR , RELAY_TO))

8. UDP(R2(LOCATOR , RELAY_TO))

Figure 5.1: Opportunistic Base Exchange via a HIP Relay

The issue with this extension to HIP NAT traversal for supporting the oppor-
tunistic mode is to solve where the Initiator �nds the IP address and the port
of the peer. Additionally, there is a security issue with sending the IP address
and the port of the peer unencrypted in the I1 packet to the HIP Relay. There
is privacy loss and risk of DoS attacks on the peer.

NAT traversal and our Extension

Let us consider next how our extension to HIPL should work with the HIP
relay. In our solution, the Initiator sends out an I1 packet, as well as a TCP
packet for the detection. The I1 packet initiates the base exchange immediately
in case the peer is HIP-enabled. When the peer does not support HIP, the
reply to the TCP packet indicates the lack of HIP support.

When the peer does not support HIP, there is no reason for it to register with
the HIP Relay. Therefore, a HIP host cannot communicate with a non-HIP

CHAPTER 5. FUTURE WORK 39

host through the HIP relay. In the previous paragraph, we argued that the
initial TCP packet needed to reach the peer only when the peer did not support
HIP. As a result, we conclude that the HIP Relay does not need to relay TCP
packets in order to �t our extension.

Let us examine the case when both the Initiator and the Responder support
our extension and the HIP Relay is as currently standardized. The Initiator
sends an I1 packet and a TCP SYN_I1 packet through the relay. Since the
relay does not currently relay TCP packets, only the I1 packet reaches the
Responder after being forwarded by the HIP relay. The processing of oppor-
tunistic I1 packets at the HIP Relay should be done as previously de�ned in
the previous subsection. The hosts continue with the rest of the packets of the
base exchange as standardized in [15].

Let us now suppose that we have two HIP hosts behind NATs, the Initiator
supports our extension and the Responder is a legacy HIP host, and the HIP
Relay is extended to support the opportunistic mode. In our extension, a HIP
host attempts both HIP and non-HIP communication to an unknown host.
Therefore, the Initiator sends out both an opportunistic I1 packet, as well as a
TCP SYN_I1 packet. The HIP Relay forwards the I1 packet to the peer with
the necessary changes depending on whether it contains the peer HIT or the
IP-port parameter, and drops the TCP packet. The TCP packet never reaches
the standard HIP peer, which is correctly identi�ed as a HIP host because the
I1 packet triggers HIP communication.

5.2 Support only for TCP

Our solution has the drawback that it works only for the TCP protocol. Pos-
sible future work would be to do the same for other protocols, even though it
would not be easy. Not all transport layer protocols have properties to sus-
tain HIP detection. For example, UDP does not have a handshake mechanism
in which to negotiate for HIP detection. However, the opportunistic mode
can be used with UDP-based communication but without the performance
improvements of our extension.

Chapter 6

Conclusion

HIP provides network layer security and supports end-host mobility and multi
homing. Therefore, hosts on the Internet would bene�t from it. However, they
are not expected to adopt HIP all at the same time. An additional deployment
obstacle is the lack of HIP infrastructure to look up HIP name information.
Until there is adequate name infrastructure, HIP has to operate without it.

Before HIP becomes widely deployed, it has to be backwards compatible in
an e�cient manner. Current HIP implementation detects peer HIP support
using timeouts, but the latency is an obstacle to normal user experience. In
this thesis, we extend the HIP implementation of the HIPL project to overcome
the deployment obstacles.

Our solution uses TCP options to detect peer HIP support. TCP options are
widely supported in the Internet. With this design alternative, our solution is
bene�cial only to TCP tra�c. However, most of the tra�c in Internet is TCP
tra�c and we argue that we have tackled the most imminent problem. The
opportunistic HIP mode based on timeouts is still applicable to other trans-
port layer protocols, such as UDP, but without the performance improvements
shown in this thesis.

We conducted tests on the performance of our solution measuring the latency
and throughput. The results showed that our extension to HIP did not cause
additional performance problems to the implementation. On the other hand,
user experience seems to bene�t as the latency is signi�cantly reduced.

We have analyzed the security implications of our solution in di�erent scenar-
ios. Furthermore, we reviewed the compatibility of our solution with current
speci�cations and drafts, such as the HIP DNS infrastructure, and the HIP
NAT traversal speci�cation. As a result, we provided some possible guidelines
for future work.

40

CHAPTER 6. CONCLUSION 41

The most important bene�t of our solution is the implementation of e�cient
detection of HIP support at an unknown peer. This detection replaces the
timeout mechanism, and improves user experience. Another bene�t of our
solution is that it maintains backwards compatibility with HIP hosts that do
not support our extension. HIP hosts that implement our extension are able
to detect HIP support at legacy HIP hosts. Thus, our extension does not have
to be deployed at servers.

Bibliography

[1] HIPL: HIP for Linux. http://infrahip.hiit.fi/index.php?index=

hipl.

[2] Linux IPv4 raw sockets. Linux Programmer's Manual, SOCK_RAW.

[3] Linux Userspace Packet Queuing. Linux Programmer's Manual, libipq.

[4] Net�lter. The net�lter.org project.

[5] The TCP/UDP Bandwidth Measurement Tool. http://dast.nlanr.

net/Projects/Iperf/.

[6] Mark Allman Alberto Medina and Sally Floyd. Measuring interactions
between transport protocols and middleboxes, 2004. ICSI Center for In-
ternet Research.

[7] Mark Allman Alberto Medina and Sally Floyd. Measuring the Evolution
of Transport Protocols in the Internet. ACM!, April 2005. SIGCOMM
CCR Volume 35 Issue 2.

[8] R. Austein D. Atkins. RFC 3833: Threat Analysis of the Domain Name
System (DNS). Internet Engineering Task Force, August 2004. http:

//www.ietf.org/rfc/rfc3833.txt.

[9] Andrei Gurtov. Host Identity Protocol (HIP): Towards the Secure Mobile
Internet. Wiley, June 2008.

[10] HIP for inter.net Project. hip4inter.net. http://www.hip4inter.net/.

[11] P. Matthews J. Rosenberg, R. Mahy. Traversal using relays around
nat (turn): Relay extensions to session traversal utilities for nat
(stun), January 2008. [Internet Draft] http://tools.ietf.org/html/
draft-ietf-behave-turn-06.

[12] Miika Komu and Janne Lindqvist. Leap-of-faith security is enough for
mobility, March 2008. Unpublished manuscript.

42

http://infrahip.hiit.fi/index.php?index=hipl
http://infrahip.hiit.fi/index.php?index=hipl
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://www.ietf.org/rfc/rfc3833.txt
http://www.ietf.org/rfc/rfc3833.txt
http://www.hip4inter.net/
http://tools.ietf.org/html/draft-ietf-behave-turn-06
http://tools.ietf.org/html/draft-ietf-behave-turn-06

BIBLIOGRAPHY 43

[13] J. Lindqvist. Establishing host identity protocol opportunistic mode with
tcp option, March 2006. [Internet Draft] http://www.tools.ietf.org/
html/draft-lindqvist-hip-opportunistic-01.

[14] J. Kangasharju M. Komu, S. Tarkoma and A. Gurtov. Applying a cryp-
tographic namespace to applications, 2005.

[15] P. Matthews M. Komu, T. Henderson, H. Tschofenig, A. Ker-
aenen, J. Melen, and M. Bagnul. Basic hip extensions for
traversal of network address translators and �rewalls, February
2008. [Internet Draft] http://www.ietf.org/internet-drafts/

draft-ietf-hip-nat-traversal-03.txt.

[16] L. Eggert M. Stiemerling, J. Quittek. Middlebox Traversal of HIP Com-
munication. IRTF Host Identity Protocol (HIP) Research Group, Novem-
ber 2004. Workshop on HIP and Related Architectures.

[17] L. Eggert M. Stiemerling, J. Quittek. Middlebox traversal issues of host
identity protocol (hip) communication, July 2005. [Internet Draft] http:
//tools.ietf.org/html/draft-stiemerling-hip-nat-05.

[18] P. Mockapetris. RFC 1035: DOMAIN NAMES - IMPLEMENTATION
AND SPECIFICATION. Internet Engineering Task Force, November
1987. http://www.ietf.org/rfc/rfc1035.txt.

[19] Robert Moskowitz and Pekka Nikander. Host Identity Protocol (HIP)
Architecture. Internet Engineering Task Force, May 2006. RFC 4423.

[20] Microsoft Developer Network (msdn). TCP/IP Raw Sockets. Microsoft
Corporation. http://msdn.microsoft.com/en-us/library/ms740548.
aspx.

[21] The OpenHIP project. The OpenHIP project. http://www.openhip.

org/.

[22] Shunsuke Oshima and Takuo Nakashima. Performance evaluation for
linux under syn �ooding attacks. In ICICIC '07: Proceedings of the Sec-
ond International Conference on Innovative Computing, Informatio and
Control, page 132, Washington, DC, USA, 2007. IEEE Computer Society.

[23] R. Moskowitz P. Jokela and P. Nikander. RFC 5202: Using the En-
capsulating Security Payload (ESP) Transport Format with the Host
Identity Protocol (HIP). Internet Engineering Task Force, April 2008.
http://www.ietf.org/rfc/rfc5202.txt.

http://www.tools.ietf.org/html/draft-lindqvist-hip-opportunistic-01
http://www.tools.ietf.org/html/draft-lindqvist-hip-opportunistic-01
http://www.ietf.org/internet-drafts/draft-ietf-hip-nat-traversal-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-hip-nat-traversal-03.txt
http://tools.ietf.org/html/draft-stiemerling-hip-nat-05
http://tools.ietf.org/html/draft-stiemerling-hip-nat-05
http://www.ietf.org/rfc/rfc1035.txt
http://msdn.microsoft.com/en-us/library/ms740548.aspx
http://msdn.microsoft.com/en-us/library/ms740548.aspx
http://www.openhip.org/
http://www.openhip.org/
http://www.ietf.org/rfc/rfc5202.txt

BIBLIOGRAPHY 44

[24] Ed. P. Nikander, T. Henderson, C. Vogt, and J. Arkko. RFC 5206: End-
Host Mobility and Multihoming with the Host Identity Protocol. Inter-
net Engineering Task Force, April 2008. http://www.ietf.org/rfc/

rfc5206.txt.

[25] J. Laganier P. Nikander. RFC 5205: Host Identity Protocol (HIP) Domain
Name System (DNS) Extensions. Internet Engineering Task Force, April
2008. http://www.ietf.org/rfc/rfc5205.txt.

[26] Jukka Ylitalo Pekka Nikander and Jorma Wall. Integrating security, mo-
bility, and multi-homing in a hip way, February 2003.

[27] Jon Postel. RFC 791: Internet Protocol. Internet Engineering Task Force,
September 1981. http://www.ietf.org/rfc/rfc791.txt.

[28] Jon Postel. RFC 793: Transport Control Protocol. Internet Engineering
Task Force, September 1981. http://www.ietf.org/rfc/rfc793.txt.

[29] M. Larson R. Arends, R. Austein, D. Massey, and S. Rose. RFC 4033:
DNS Security Introduction and Requirements. Internet Engineering Task
Force, March 2005. http://www.ietf.org/rfc/rfc4033.txt.

[30] P. Nikander R. Moskowitz, Ed. P. Jokela, and T. Henderson. RFC 5201:
Host Identity Protocol. Internet Engineering Task Force, April 2008.
http://www.ietf.org/rfc/rfc5201.txt.

[31] R. Hinden S. Deering. RFC 2460: Internet Protocol, Version 6 (IPv6).
Internet Engineering Task Force, December 1998. http://www.ietf.

org/rfc/rfc2460.txt.

[32] Rodrigo Fonseca George Porter Randy H. Katz Scott Shenker. Ip options
are not an option, December 2005. Technical Report No. UCB/EECS-
2005-24.

[33] Lauri Silvennoinen. Legacy network address translator traversal using the
host identity protocol, October 2007.

[34] Essi Vehmersalo. Host identity protocol enabled �rewall, September 2005.

http://www.ietf.org/rfc/rfc5206.txt
http://www.ietf.org/rfc/rfc5206.txt
http://www.ietf.org/rfc/rfc5205.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc5201.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt

Appendix A

Application Code Examples

A.1 Sending a raw TCP packet

/**

* adds the i1 option to a packet if required

* adds the default HIT after the i1 option (if i1 option should be added)

* and sends it off with the correct checksum

* trafficType - 4 or 6 - standing for ipv4 and ipv6

*/

/**

* Sends a TCP packet through a raw socket.

*

* @param *ptr pointer to an integer that indicates

* the type of traffic: 4 - ipv4; 6 - ipv6.

* @param *ptr

* @return nothing, this function loops forever,

* until the firewall is stopped.

*/

int send_tcp_packet(void *hdr,

int newSize,

int trafficType,

int sockfd,

45

APPENDIX A. APPLICATION CODE EXAMPLES 46

int addOption,

int addHIT){

int on = 1, i, j, err = 0, off = 0;

int hdr_size, newHdr_size, twoHdrsSize;

char *packet;

char *bytes =(char*)hdr;

struct sockaddr_in sin_addr;

struct sockaddr_in6 sin6_addr;

struct in_addr dstAddr;

struct in6_addr dst6Addr;

struct tcphdr *tcphdr;

struct tcphdr *newTcphdr;

struct ip * iphdr;

struct ip * newIphdr;

struct ip6_hdr * ip6_hdr;

struct ip6_hdr * newIp6_hdr;

struct pseudo_hdr *pseudo;

struct pseudo6_hdr *pseudo6;

void *pointer;

struct in6_addr *defaultHit = HIP_MALLOC(sizeof(char)*16, 0);

char newHdr [newSize + 4*addOption + (sizeof(struct in6_addr))*addHIT];

char *HITbytes;

if(addOption)

newSize = newSize + 4;

if(addHIT)

newSize = newSize + sizeof(struct in6_addr);

//initializing the headers and setting socket settings

if(trafficType == 4){

//get the ip header

iphdr = (struct ip *)hdr;

//get the tcp header

hdr_size = (iphdr->ip_hl * 4);

tcphdr = ((struct tcphdr *) (((char *) iphdr) + hdr_size));

//socket settings

sin_addr.sin_family = AF_INET;

sin_addr.sin_port = htons(tcphdr->dest);

sin_addr.sin_addr = iphdr->ip_dst;

}

else if(trafficType == 6){

APPENDIX A. APPLICATION CODE EXAMPLES 47

//get the ip header

ip6_hdr = (struct ip6_hdr *)hdr;

//get the tcp header

hdr_size = sizeof(struct ip6_hdr);

tcphdr = ((struct tcphdr *) (((char *) ip6_hdr) + hdr_size));

//socket settings

sin6_addr.sin6_family = AF_INET6;

sin6_addr.sin6_port = htons(tcphdr->dest);

sin6_addr.sin6_addr = ip6_hdr->ip6_dst;

}

//measuring the size of ip and tcp headers (no options)

twoHdrsSize = hdr_size + 4*5;

//copy the ip header and the tcp header without the options

memcpy(&newHdr[0], &bytes[0], twoHdrsSize);

//get the default hit

if(addHIT){

hip_get_default_hit(defaultHit);

HITbytes = (char*)defaultHit;

}

//add the i1 option and copy the old options

//add the HIT if required,

if(tcphdr->doff == 5){//there are no previous options

if(addOption){

newHdr[twoHdrsSize] = (char)HIP_OPTION_KIND;

newHdr[twoHdrsSize + 1] = (char)2;

newHdr[twoHdrsSize + 2] = (char)1;

newHdr[twoHdrsSize + 3] = (char)1;

if(addHIT){

//put the default hit

memcpy(&newHdr[twoHdrsSize + 4], &HITbytes[0], 16);

}

}

else{

if(addHIT){

//put the default hit

memcpy(&newHdr[twoHdrsSize], &HITbytes[0], 16);

}

}

APPENDIX A. APPLICATION CODE EXAMPLES 48

}

else{//there are previous options

if(addOption){

newHdr[twoHdrsSize] = (char)HIP_OPTION_KIND;

newHdr[twoHdrsSize + 1] = (char)2;

newHdr[twoHdrsSize + 2] = (char)1;

newHdr[twoHdrsSize + 3] = (char)1;

//if the HIT is to be sent, the

//other options are not important

if(addHIT){

//put the default hit

memcpy(&newHdr[twoHdrsSize + 4], &HITbytes[0], 16);

}

else

memcpy(&newHdr[twoHdrsSize + 4], &bytes[twoHdrsSize], 4*(tcphdr->doff-5));

}

else

{

//if the HIT is to be sent, the

//other options are not important

if(addHIT){

//put the default hit

memcpy(&newHdr[twoHdrsSize], &HITbytes[0], 16);

}

else

memcpy(&newHdr[twoHdrsSize], &bytes[twoHdrsSize], 4*(tcphdr->doff-5));

}

}

pointer = &newHdr[0];

//get pointers to the new packet

if(trafficType == 4){

//get the ip header

newIphdr = (struct ip *)pointer;

//get the tcp header

newHdr_size = (iphdr->ip_hl * 4);

newTcphdr = ((struct tcphdr *) (((char *) newIphdr) + newHdr_size));

}

else if(trafficType == 6){

//get the ip header

APPENDIX A. APPLICATION CODE EXAMPLES 49

newIp6_hdr = (struct ip6_hdr *)pointer;

//get the tcp header

newHdr_size = (newIp6_hdr->ip6_ctlun.ip6_un1.ip6_un1_plen * 4);

newTcphdr = ((struct tcphdr *) (((char *) newIp6_hdr) + newHdr_size));

}

//change the values of the checksum and the tcp header length(+1)

newTcphdr->check = 0;

if(addOption)

newTcphdr->doff = newTcphdr->doff + 1;

if(addHIT)

newTcphdr->doff = newTcphdr->doff + 4;//16 bytes HIT - 4 more words

//the checksum

if(trafficType == 4){

pseudo = (struct pseudo_hdr *) ((u8*)newTcphdr - sizeof(struct pseudo_hdr));

pseudo->s_addr = newIphdr->ip_src.s_addr;

pseudo->d_addr = newIphdr->ip_dst.s_addr;

pseudo->zer0 = 0;

pseudo->protocol = IPPROTO_TCP;

pseudo->length = htons(sizeof(struct tcphdr) + 4*(newTcphdr->doff-5) + 0);

newTcphdr->check = in_cksum((unsigned short *)pseudo, sizeof(struct tcphdr) +

4*(newTcphdr->doff-5) + sizeof(struct pseudo_hdr) + 0);

}

else if(trafficType == 6){

pseudo6 = (struct pseudo6_hdr *) ((u8*)newTcphdr - sizeof(struct pseudo6_hdr));

pseudo6->s_addr = newIp6_hdr->ip6_src;

pseudo6->d_addr = newIp6_hdr->ip6_dst;

pseudo6->zer0 = 0;

pseudo6->protocol = IPPROTO_TCP;

pseudo6->length = htons(sizeof(struct tcphdr) + 4*(newTcphdr->doff-5) + 0);

newTcphdr->check = in_cksum((unsigned short *)pseudo6, sizeof(struct tcphdr) +

4*(newTcphdr->doff-5) + sizeof(struct pseudo6_hdr) + 0);

}

//replace the pseudo header bytes with the correct ones

memcpy(&newHdr[0], &bytes[0], hdr_size);

APPENDIX A. APPLICATION CODE EXAMPLES 50

if(setsockopt(sockfd, IPPROTO_IP, IP_HDRINCL, (char *)&on, sizeof(on)) < 0){

HIP_DEBUG("Error setting an option to raw socket\n");

return;

}

//finally send through the socket

err = sendto(sockfd, &newHdr[0], newSize, 0, (struct sockaddr *)&sin_addr, sizeof(sin_addr));

out_err:

if(defaultHit)

HIP_FREE(defaultHit);

setsockopt(sockfd, IPPROTO_IP, IP_HDRINCL, (char *)&off, sizeof(off));

return err;

}

A.2 Reading packets with ipq

/**

* Analyzes packets.

* @param *ptr pointer to an integer that indicates

* the type of traffic: 4 - ipv4; 6 - ipv6.

* @return nothing, this function loops forever,

* until the firewall is stopped.

*/

int hip_fw_handle_packet(char *buf, struct ipq_handle *hndl, int ip_version, hip_fw_context_t *ctx)

{

// assume DROP

int verdict = 0;

// same buffer memory as for packets before -> re-init

memset(buf, 0, BUFSIZE);

/* waits for queue messages to arrive from ip_queue and

* copies them into a supplied buffer */

if (ipq_read(hndl, buf, BUFSIZE, 0) < 0)

APPENDIX A. APPLICATION CODE EXAMPLES 51

{

HIP_PERROR("ipq_read failed: ");

// TODO this error needs to be handled seperately -> die(hndl)?

goto out_err;

}

/* queued messages may be a packet messages or an error messages */

switch (ipq_message_type(buf))

{

case NLMSG_ERROR:

HIP_ERROR("Received error message (%d): %s\n", ipq_get_msgerr(buf), ipq_errstr());

goto out_err;

break;

case IPQM_PACKET:

HIP_DEBUG("Received ipqm packet\n");

// no goto -> go on with processing the message below

break;

default:

HIP_DEBUG("Unsupported libipq packet\n");

goto out_err;

break;

}

// set up firewall context

if (hip_fw_init_context(ctx, buf, ip_version))

goto out_err;

HIP_DEBUG("packet hook=%d, packet type=%d\n", ctx->ipq_packet->hook, ctx->packet_type);

// match context with rules

if (hip_fw_handler[ctx->ipq_packet->hook][ctx->packet_type]) {

verdict = (hip_fw_handler[ctx->ipq_packet->hook][ctx->packet_type])(ctx);

} else {

HIP_DEBUG("Ignoring, no handler for hook (%d) with type (%d)\n");

}

out_err:

if (verdict) {

HIP_DEBUG("=== Verdict: allow packet ===\n");

allow_packet(hndl, ctx->ipq_packet->packet_id);

} else {

HIP_DEBUG("=== Verdict: drop packet ===\n");

APPENDIX A. APPLICATION CODE EXAMPLES 52

drop_packet(hndl, ctx->ipq_packet->packet_id);

}

// nothing to clean up here as we re-use buf, hndl and ctx

return 0;

}

	Terms and Abbreviations
	Introduction
	Background
	Options in the IP header
	IPv4 Options
	IPv6 Options

	Options in the TCP header
	TCP SYN cookies
	General Overview of the Host Identity Protocol
	Opportunistic Mode Implementation Architecture

	HIP DNS Extensions
	HIP NAT Traversal Extensions
	General overview of the HIP firewall
	Introduction to Linux Raw Sockets
	Introduction to the libipq Library

	Implementation Architecture
	Design Alternatives
	IP Options
	HIP DNS Extensions
	Establishing Host Identity Protocol Opportunistic Mode with HIT in TCP Option
	Optimized TCP Option Approach
	Final Design

	Solution Architecture - I1 and TCP Packet with Option Simultaneously

	Results and Analysis
	Performance measurements
	HTTP Transfers
	TCP Throughput
	TCP Handshake Latency at the Application Layer

	Future Work
	Protocol Analysis
	Security Analysis
	Compatibility with RVS
	NAT traversal

	Support only for TCP

	Conclusion
	Application Code Examples
	Sending a raw TCP packet
	Reading packets with ipq

