HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Telecommunications Software and Multimedia Laboratory

HOST IDENTITY PROTOCOL
ENABLED FIREWALL

A Prototype Implementation and
Analysis

Master’s Thesis

Essi Vehmersalo

Telecommunications Software and Multimedia Laboratory
Espoo 2005

HELSINKI UNIVERSITY OF ABSTRACT OF
TECHNOLOGY MASTER’S THESIS
Department of Computer Science and Engineering

Degree Programme of Computer Science and Engineering

Author: Essi Vehmersalo

Title of thesis:

HOST IDENTITY PROTOCOL ENABLED FIREWALL
A Prototype Implementation and Analysis

Date: September 6 2005 Pages: 10 + 70
Professorship: Telecommunications Software Code: T-110
Supervisor: Professor Antti Yla-Jasski

Instructor: Janne Lindqvist, M.Sc. (Tech.)

This thesis focuses on interactions between network firewalls and Host
Identity Protocol (HIP). HIP is an emerging technology that introduces
cryptographic Host Identities (HI) into the Internet architecture. As a
result it has profound effects on security as well as mobility and multi-
homing.

The objective of this thesis was to design and implement a firewall pro-
totype that enables traffic filtering based on the HIP HIs and is able to
correctly filter HIP traffic. Furthermore this thesis analyzed the effects
that different aspects of HIP have on firewall technologies. These include
for example added security features, such as traffic authentication, and
more flexible handling of mobility and multihoming.

The implemented firewall meets the requirements defined for it. Traffic fil-
tering is done based on HIs of the end-hosts and cryptographic properties
of the HI are used for authenticating the HIP control traffic. The firewall
also implements stateful connection tracking mechanisms to associate the
Encapsulating Security Payload (ESP) data traffic to the HIP association.
Possible directions for further development and research are also identi-
fied. These include for instance extending the firewall to include the HIP
registration capability and further research of firewall performance and
efficiency.

Keywords: HIP, HI, firewall, middlebox, packet filtering
Language: English

il

TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
Tietotekniikan osasto
Tietotekniikan koulutusohjelma

Tekija: Essi Vehmersalo

Ty6n nimi:

HOST IDENTITY PROTOCOL ENABLED FIREWALL
A Prototype Implementation and Analysis

Piiviys: 6. syyskuuta 2005 Sivumaéaira: 10 + 70
Professuuri: Tietoliikenneohjelmistot Koodi: T-110

Tyo6n valvoja: Professori Antti Yla-Jaaski
Tyon ohjaaja: DI Janne Lindqvist

Taméa diplomityo keskittyy Internet palomuurien ja Host Identity Pro-
tocol (HIP) -teknologian véliseen yhteistoimintaan ja vuorovaikutukseen.
HIP on kehitteilld oleva teknologia joka tuo kryptografiset, paatelaitteita
kuvaavat identiteetit, Host Identity (HI), Internet arkkitehtuuriin. Siksi
HIP:1la onkin syvillisia vaikutuksia seka turvallisuuteen etté liikkuvuuden
hallintaan.

Tamén diplomityon tavoitteena oli suunnitella ja toteuttaa palomuuripro-
totyyppi, joka mahdollistaa liikenteen suodattamisen paételaitteiden iden-
titeettien perusteella sekid kykenee kisittelemddn HIP-liikennettd. Lisdksi
diplomity6 analysoi HIP:n eri osa-alueiden ja toimintojen vaikutusta palo-
muuriteknologioihin. Né&ihin kuuluvat esimerkiksi uudet turvallisuusomi-
naisuudet, kuten liikenteen luotettava tunnistaminen, sekd liikkuvuuden
joustavampi késittely.

Tyo6n tuloksena syntynyt palomuuri toteuttaa sille asetetut vaatimukset.
Liikenne suodatetaan paéitelaitteiden identiteettien perusteella ja iden-
titeettien kryptografisia ominaisuuksia kiytetdin hyviksi HIP-liikenteen
autentikoinnissa. Palomuuri toteuttaa myos tilaa yllapitdvan yhteyksien
valvonnan, jonka avulla Encapsulating Security Payload (ESP) -data-
litkkenne kyetdédn liittdméadn tiettyyn HIP-yhteyteen. My6s mahdollisia
jatkokehitys ja -tutkimus aiheita on nimetty. N&itd ovat esimerkiksi HIP
rekisterdintitoiminnon lisddminen palomuuriin sekd palomuurin tehokkuu-
den ja suorituskyvyn tutkiminen edelleen.

Avainsanat: HIP, HI, palomuuri, pakettisuodatus
Kieli: Englanti

il

Acknowledgements

This thesis was done at HUT Telecommunications Software and Multimedia
Laboratory (TML) as part of the joint InfraHIP project of TML and Helsinki
Institute for Information Technology (HIIT). I would like to thank my su-
pervisor, Professor Antti Yl&-Jééski, and instructor, M.Sc. (Tech.) Janne
Lindqvist, for their valuable feedback and guidance. Also, the entire InfraHIP
project group has provided important views and insights to HIP and related
aspects, special thanks to Miika Komu for his help with the HIPL.

Last but not least I would like to thank my friends and family and especially
T-P for the love and support and the refreshing and inspiring distractions
during the writing of this thesis.

Helsinki, September 6th 2005

Essi Vehmersalo

v

Abbreviations and Acronyms

DoS
DSA
ESP
HI
HIP
HIPL
HIT
HMAC
ICMP
IETF
IRTF
IP
IPsec
1Pv4
IPv6
NAT
RSA
RVS
SA
SPI
SPKI
TCP
UDP
VPN

Denial of Service

Digital Signature Standard
Encapsulating Security Payload
Host Identity

Host Identity Protocol

Host Identity Protocol for Linux
Host Identity Tag

Keyed-Hashing for Message Authentication
Internet Control Message Protocol
Internet Engineering Task Force
Internet Research Task Force
Internet Protocol

Internet Protocol security

Internet Protocol version 4
Internet Protocol version 6
Network Address Translation
Rivest Shamir Adleman public key algorithm
Rendezvous Server

Security Association

Security Parameter Index

Simple Public Key Infrastructure
Transmission Control Protocol
User Datagram Protocol

Virtual Private Network

Contents

Abbreviations and Acronyms v
1 Introduction 1
1.1 Problem Statement 2
1.2 Scope 3
1.3 Organization of the Thesis 3

2 Background 4
21 Firewallso 4
2.1.1 Firewalls as Network Elements 4

2.1.2 Different Functionalities Provided by Firewalls Y

2.2 Host Identity Protocol (HIP) 8
2.2.1 Protocol Overview 8

2.2.2 Mobility and Multihoming 9

2.2.3 Registration protocol 0L 10

2.24 Rendezvous 10

2.3 Summary e 11

3 HIP Enabled Firewalling 12
3.1 HIP with firewalls 12
3.1.1 Basic Functionality 13

3.1.2 Registration Protocol 15

3.1.3 HIP Rendezvous Service 17

vi

3.1.4 Mobility and Multihoming
3.1.5 Asymmetric Routing
3.1.6 HIP Certificate Parameter
3.1.7 Potential Security Vulnerabilities
3.2 Scenarios for HIP Enabled Firewall
3.2.1 General Firewalling Scenario
3.2.2 Road Warrior and Virtual Private Network (VPN) So-

lution
3.3 Summary
Requirements
4.1 Functional Requirements
4.1.1 Firewall Policy Management
4.1.2 Overall Functionality
4.1.3 Stateless Packet Filtering.
4.1.4 Stateful Packet Filtering
4.2 Non-Functional Requirements
4.2.1 Requirements Regarding the Design
4.2.2 Security
4.2.3 Secondary Requirements
4.3 Summary
Design
5.1 Design Alternatives L.

5.1.1 Linux Netfilter Extension
5.1.2 Independent HIP Firewall Solution
5.2 HIP Enabled Firewall Design
5.2.1 Firewall Main Module
5.2.2 Firewall Policy Management
5.2.3 Packet Filtering Functionalities
5.2.4 Connection Tracking

vil

28

34

41

5.3 Summary 43

Implementation 44
6.1 FExternal Components 44
6.2 Firewall Main Module 45
6.3 Packet Filtering Functions 45
6.4 Firewall Policy Management 45
6.4.1 Data Structures L. 46
6.4.2 Parsing Rules 47
6.4.3 Interface for Firewall Management 47
6.5 Connection Tracking 48
6.5.1 Functionality 49
6.5.2 Data Structures L. 20
6.6 Interaction Between Components ol
6.7 Summary 593
Analysis 54
7.1 Evaluation Against Requirements 54
7.1.1 Test and Development Setting 54
7.1.2 Overall Functionality and Interfacing to the Commu-
nication System 26
7.1.3 Firewall Policy Management 56
7.1.4 Stateless Packet Filtering. o7
7.1.5 Connection Tracking a7
7.1.6 Non-Functional Requirements 59
7.2 General Analysis of HIP Enabled Firewalling 59
7.2.1 Role of HIP Enabled Firewall 60
7.2.2 Registration Requiring Firewall 60
7.2.3 HIP Protocol Implications to Firewall Design and Im-
plementation 61
7.3 SUMMAry e e 62

viil

8 Conclusions 63

81 Future Worko 64
8.1.1 Supporting Updated HIP Specifications 64
8.1.2 Extending Firewall to Include Registration 65
8.1.3 Production Level Firewall Solution 65

X

List of Figures

2.1 HIP base exchange 9
2.2 HIP base exchange through Rendezvous Server (RVS) 11
3.1 State maintained by intermediate firewalls 16
3.2 HIP mobility signaling 19
3.3 Asymmetric routing scenario 20
3.4 Asymmetric routing scenario with SPISIG signaling 21
4.1 Format of the firewall rule 28
4.2 Format of stateless filtering options 29
4.3 Format of the state option 30
5.1 High level architecture 35
5.2 Netfilter hooks and packet traversal 36
5.3 A simplified connection table structure of conntrack module . 37
5.4 Overall design of the HIP enabled firewall 40
6.1 Rule data structure L oL 46
6.2 Functions for managing firewall rules 48
6.3 Connection tracking data model 50
6.4 Overall functional sequence of the system 52
7.1 Test setting 95

Chapter 1

Introduction

Host Identity Protocol (HIP) [22, 25| is a proposed protocol for providing
security, mobility and multihoming to the current Internet architecture. HIP
establishes a new name space of Host Identities (HI) for representing hosts
independent of their locations in the network. By contrast, the current ar-
chitecture uses the Internet Protocol (IP) addresses to identify hosts.

The host identity implies also a change in the Internet architecture. HIP
creates a conceptual layer between the network and transport layers. With
this architectural change, transport level associations can be bound to an
identifier representing the host rather than the topological location of it.
This has profound impacts on handling mobility and multihoming [24]. The
current Internet architecture is based on the assumption that hosts have a
single static network attachment point. This was a reasonable supposition at
the time Internet architecture was developed. However, it no longer applies
as mobility and multihoming are becoming all the more viable and desirable
in networking.

Possibly the most significant contribution of HIP is the inherent security it
adds to the architecture. The identity of the host is in fact the public key of a
cryptographic public/private key pair possessed by the host. Accordingly, the
very identity of the host can be used for authenticating its owner. This makes
HIP essentially different from other available communication protocols. It
adds deeply embedded security into Internet communication.

The other main theme of research in this thesis are Internet firewalls. Fire-
walls protect networks by filtering traffic passing through them, to and from
the protected network. To enhance and ensure security, firewalls analyze
properties of the intercepted traffic.

CHAPTER 1. INTRODUCTION 2

In order to perform filtering reliably, a firewall needs to be able to trust the
validity of the information it analyzes in the packet headers. Furthermore,
probably the most important filtering criteria are the source and destination
end-point of the traffic. This is, however, problematic as the current end-
point identifier, the IP address, is by nature insecure and can easily be forged
to impersonate another host.

This thesis analyzes implications and effects of HIP in the context of Internet
firewalls. As HIP is a relatively new proposed technology, it is essential to
evaluate what consequences it has on different aspects of the existing archi-
tecture and already well established technologies. Furthermore, the security
and the architectural restructuring provided by HIP are likely to have an im-
pact also on firewall technologies. Therefore, the general motivation of this
thesis is not simply developing a firewall that allows HIP traffic to traverse.
Instead, the thesis studies the implications and possible benefits that HIP
protocol has from the point of view of firewall technologies.

1.1 Problem Statement

The filtering mechanisms of current firewalls are largely based on the IP
address as an end-point identifier. In effect, they are often vulnerable to
[P address spoofing if the firewall is not able to properly authenticate the
end-point.

Furthermore, firewalls are a widely established security mechanism. The cur-
rent firewalls do not, however, support filtering of HIP traffic. As a conse-
quence, HIP traffic is in general blocked by firewalls |30, 31|. Still, traversing
middleboxes is a necessary property for any protocol in order for it to be
successfully deployed. The enhanced security provided by HIP could there-
fore be an important motivation for adding HIP support into firewalls. This
could in turn aid the deployment of HIP.

This thesis analyzes the possibilities and effects of traffic filtering based on
HIP host identities. The objective is to design and implement a firewall
solution for using host identities for access control decisions. Accordingly, the
firewall will need to filter traffic based on HIP associations. This will require
maintaining necessary state regarding the HIP association. The firewall will
also take advantage of the traffic authentication mechanisms provided by
HIP. Thesis will further analyze different aspects of HIP protocol with regard
to firewall interoperability and interactions. This includes issues such as
mobility, asymmetric routing and denial of service vulnerabilities.

CHAPTER 1. INTRODUCTION 3

1.2 Scope

The analysis of the thesis covers different aspects of HIP protocol and a HIP
enabled firewall should be implemented with regard to these aspects. As HIP
is an emerging new technology, all parts of the protocol are not yet covered
by the existing HIP implementations. In general, the HIP for Linux (HIPL)
|1, 7] is used as the reference implementation. Therefore, firewall features
may be implemented to the extent that the protocol implementation covers
them. The design of the system should, however, consider the analyzed issues
in order to be extendable to include them in the future.

The thesis provides a prototype implementation of the HIP enabled firewall.
Therefore the implementation will serve as a proof of concept rather than a
production level firewall.

1.3 Organization of the Thesis

Rest of this thesis is organized as follows. Chapter 2 presents background
information on the field of the thesis. In Chapter 3 different aspects of HIP
enabled firewalling are analyzed and this also provides basis for design and
implementation of a HIP enabled firewall. Chapter 4 describes the require-
ments for the implementation. The design of the solution is presented in
Chapter 5 and the implementation related issues in Chapter 6. The solution
is analyzed in Chapter 7 and Chapter 8 will then present conclusions of the
thesis along with directions for possible future research.

Chapter 2

Background

This chapter describes closely related background information on the field
of the thesis. The chapter gives an overall introduction to firewalls with
their functionalities and requirements. HIP protocol functionality is also
presented on general level. Additional aspects of HIP, that have effects on
firewall functionalities are then described in more detail. These concern for
example additional functionalities that HIP can provide to firewalling or
different types of traffic that a HIP enabled firewall may encounter.

2.1 Firewalls

In general, firewalls are entities that in some way screen network traffic and
accordingly filter out unwanted traffic [6]. Within this definition there is quite
a diversity of firewall solutions operating on different levels of protocol stack
and providing different sets of functionality. Furthermore, firewall may also
be a separate, designated network entity or it may be integrated together with
other functionalities of a network node. The following chapters first discuss
the nature of firewalls as network elements. This provides basic constraints
and requirements that will be further addressed in the rest of the thesis. Also
some of the functionalities provided by firewalls are then identified.

2.1.1 Firewalls as Network Elements

Firewalls are generally used as a security perimeter protecting a certain part
of network. The protected part of network may range from a single host
to a large segment containing several subnets. However, firewalls enable

CHAPTER 2. BACKGROUND 5

defining and upholding level of security for all these cases in a centralized
manner. With a limited number of designated firewalls, an organization is less
dependent on security measures of multiple individual end-hosts. This also
evens out the general asymmetric setting between an attacker and a target:
The target needs to cover all potential vulnerabilities, but for an attacker
finding a single security hole suffices. With centralized security, also the
target is able to limit the number of potential vulnerabilities. Accordingly,
firewalls are a widely deployed security mechanism.

There is, however, controversy regarding the role of firewalls as network el-
ements. One of the guiding design principles of Internet, the end-to-end
argument |28|, states that some essential functions can and should only be
performed by the end-hosts. Consequently, the communication between end-
points should not be dependent on intermediate network elements. This
implies that there should not be additional complexity in the intermediate
network elements that enables packets to traverse. However, the very pur-
pose of firewalls is to uphold security by blocking traffic [8]. Furthermore, the
firewall’s ability to let through legitimate traffic often requires understanding
the particularities of certain protocols or even maintaining state information
regarding the traffic.

There is an apparent need for a compromise between the requirement for
centralized security and the end-to-end argument. Even though the end-to-
end argument certainly holds value as a design principle, centralized security
mechanisms are necessary for organizations to uphold unified security poli-
cies. Therefore the need for security provided by firewalls is understandable
and there needs to be a balance between these two requirements. This issue
is addressed by the transparency rule [13|, stating that a firewall must not
interfere with legitimate, standards-compliant traffic. In effect, up keeping
the transparency should be an important principle in firewall design. Fur-
thermore, even though the burden of transparency rule is ultimately on the
firewall implementer, also the design of a protocol should consider differ-
ent middleboxes, such as firewalls. If not for purely architectural reasons,
then from the self-serving reason of aiding the future deployment of the new
technology.

2.1.2 Different Functionalities Provided by Firewalls

Firewalls may perform different sets of functionalities for screening and filter-
ing packets. Also, there is no actual standardization for firewalls and there-
fore the naming conventions are somewhat variable. The following presents

CHAPTER 2. BACKGROUND 6

general issues and the main categories of firewall functionality. This catego-
rization concentrates on features that are most closely related to HIP enabled
firewalls although other functionalities exist as well.

Policy vs. Functionality

When considering the functionality of a firewall, it is first necessary to sepa-
rate the concepts of the filtering functionality and the firewall security policy.
Here, the filtering functionality refers to the actual mechanisms used for fil-
tering, whereas the policy defines which of the filtering mechanisms are used
and which packets they are applied to. Referring back to the previous chap-
ter, it is legitimate to block anything that would be considered malicious by
the firewall policy. However, related to the transparency rule, when certain
type of traffic is allowed by the policy, there must be nothing in the filtering
mechanisms that blocks that traffic.

For the most part, this thesis concentrates on the filtering functionality. It
analyzes how these functionalities should be implemented with regard to HIP
protocol so that they can be used to enforce different policies. Policies are
used to describe more concrete scenarios, where HIP enabled firewalls could
be of use. In effect, the policies are dependent on the security requirements
of a particular organization or network in question.

Level of Protocol Stack

Firewalls function on different levels of the protocol stack [9]. On the network
access layer, the Media Access Control (MAC) addresses could be analyzed.
In the network layer logical filtering attributes would be IP addresses and for
example properties of the Internet Control Message Protocol (ICMP) packets.
Transport layer protocols can be analyzed through protocol ports and other
protocol information. On application level, firewalls may focus on details
of certain application level protocols, such the Hypertext Transfer Protocol
(HTTP) or e-mail protocols. Firewall functionalities may also stretch over
several layers.

Stateless vs. Stateful Firewalls

Another categorization of firewall functionalities depends on whether state is
maintained by the firewall |26, 10]. Stateless firewalls provide filtering based
on static information available in the traffic. This may include source or

CHAPTER 2. BACKGROUND 7

destination IP addresses, protocols and ports used, as well as other properties
of the packet.

Stateless packet filtering is not as effective and sophisticated method as the
stateful inspection of packets. It is however more efficient as it often requires
less computation and lacks the effort of storing state related to packets. As
the security provided by stateless packet filters is quite minimal, they are in
many cases insufficient for protecting a network.

A stateful firewall bases filtering decisions on the connection that traffic re-
lates to. Therefore, traffic can be filtered by whether it is starting a new
connection or belongs to an existing one. A necessary concept for state keep-
ing is a flow identifier. Flow identifier is the piece of information that firewall
uses to recognize traffic that belongs to a certain connection. In general, this
information includes at least the protocol used and identifiers for connec-
tion end-points. A flow identifier could include for example Transmission
Control Protocol (TCP) as protocol and IP addresses and ports used by the
communicating end-points.

Stateful filtering can also be extended to traditionally stateless protocols,
such as User Datagram Protocol (UDP). A packet can be interpreted as
belonging to same connection, if it shares the same protocol and end-points
as the previous packets. In this case the firewall must remove the state
for example after a timeout value as there is no explicit sign of closing the
connection.

Stateful firewalls can be further divided based on the nature of state keeping
[9]. With hard state, the connection between end-hosts must be restarted, if
the intermediate firewall looses its state. In the soft state approach the state
in the firewall is regularly refreshed and at the same time also recreated, if
necessary.

A traditional part of firewalls performing stateful filtering is also analyzing
the state transitions that the intercepted packets cause in the connection.
Corresponding functionalities for TCP and general principles also applica-
ble to other stateful protocols are described in [36]. Analyzing the state
transitions allows filtering out packets that are invalid in the context of the
protocol. Invalid packets may be sent by potentially malicious nodes trying
to inject packets in to the connection. This could be a sign of trying to
impersonate one end-point of the connection or attempting to cause state
transition that would break the connection between the original hosts.

CHAPTER 2. BACKGROUND 8

Transparent vs. Explicit

Firewalls may also be categorized based on whether they explicitly commu-
nicate with the end-hosts. With transparent firewalls the end-hosts may
remain unaware of the firewall. Explicit firewalls, on the other hand, require
either or both of the end-hosts to communicate directly with the firewall. A
stateful firewall that is transparent to the end-hosts is often called a dynamic
packet filter [10]

2.2 Host Identity Protocol (HIP)

HIP was already briefly introduced in Chapter 1. Here it is presented more
extensively, with emphasis on issues that may influence firewall function-
alities. HIP is currently being specified by the HIP working group of the
Internet Engineering Task Force (IETF) and the research group of the Inter-
net Research Task Force (IRTF).

The new identifier, HI, introduced by HIP, enables referring to hosts inde-
pendent of their location and number of network attachment points [22, 25].
In contrast, the current architecture uses the IP address, describing hosts
location in the network topology, also as an identifier. In effect, the new
name space corresponds to a new host identity layer between the transport
and network layers. This enables binding transport layer associations to the
invariable HI instead of the potentially inconstant location.

As mentioned, the Host Identity namespace also provides unique security
properties, as a cryptographic public key of a host is used as its HI. A more
convenient format Host Identity Tag (HIT), a 128 bit hash of the HI, is used
to refer to a host in communication. This way the public key is inherently
bound to its owner’s identity, unlike in several other technologies.

All HIP protocol packets, except for the connection initialization, are cryp-
tographically signed by the sender. This enables the receiver to authenticate
the traffic. For the convenience of middleboxes, the signature and lot of
the other protocol information are not encrypted, but are visible also for
intermediate network entities.

2.2.1 Protocol Overview

The basic functionality of HIP is defined in detail in the HIP Internet-Draft
|22]. HIP association is established with a four-way base exchange procedure.

CHAPTER 2. BACKGROUND 9

The base exchange as well as the following data traffic is illustrated in Figure
2.1. The initiator host first requests connection with I1 packet. The request
may contain the HIT of recipient or when an initiator does not know or does
not need to have control over the selection of the receiver HI, it can be left
out. The latter case is referred as opportunistic mode of operation.

The responder host answers with R1 packet containing among other things a
puzzle for the initiator to solve. Initiator responds with 12 containing the so-
lution. Responder finally verifies the solution and responds with R2 packet.
The last three packets of the base exchange also comprise a Diffie-Hellman
key exchange and contain signatures for authenticating the sender. Another
noteworthy part of the protocol is that with pre-computed R1 messages the
responder can defer state creation until receiving the 12 packet. This, to-
gether with the cost imposed on the initiator by the puzzle solving, provides
resistance to Denial of Service (DoS) attacks.

11
R1
12: SPI (i)
Initiator ¢ R2: SPI (D Responder

0) (R)
ESP data: SPI(r)

ESP data: SPI(i
<= 0

<

Figure 2.1: HIP base exchange and the following data traffic

The actual data traffic of HIP connection uses [Psec Encapsulating Security
Payload (ESP) [17] security association. The payload data is shielded inside
ESP as defined in |16]. The ESP Security Parameter Index (SPI) values of
the parties are delivered in 12 and R2 packets as illustrated in Figure 2.1.
The SPIs are used to identify the HIP association that data traffic belongs
to. Externally the HIP data traffic appears as regular IPsec traffic whereas
the HIP control packets include the HIP protocol header.

2.2.2 Mobility and Multihoming

As a host may have several network interfaces and may change its location in
the network, the location is represented by a dynamic set of IP addresses. To
enable mobility and multihoming, HIP allows end-points to signal each other

CHAPTER 2. BACKGROUND 10

the changes in the set of IP addresses they can be reached through. The multi
addressing functionalities are specified in the mobility and multihoming draft
|24 of the HIP working group.

The signaling is done with UPDATE packets, which are also used for up-
dating the SPIs of the HIP association. The end-point wishing to announce
changes sends to the other party an update message, including a sequence
number that the recipient must acknowledge. The recipient responds with
the acknowledgement and an echo request parameter. The echo request is
used to check the reachability of the other end-point in the newly announced
address. The initial host finally responds with an echo response parameter.
The address reachability verification is used to prevent flooding attacks where
a host would redirect traffic intended for itself to IP address of another host.

2.2.3 Registration protocol

A general purpose registration protocol is also proposed as part of the HIP
standardization [19]. The registration protocol can be used by end-hosts
to obtain different HIP related services. Some of the services envisioned are
rendezvous service, discussed in Chapter 2.2.4, and registration with firewalls
and other middleboxes. The registration protocol is, however, defined to
be generic in order to be applicable to a variety of different services. With
middleboxes, an initiating host would request a service of for example firewall
traversal or Network Address Translation (NAT) before sending any of the
actual traffic. This enables authenticating the initiating host before creating
a state for its traffic.

The registration protocol reuses the DoS resistant HIP base exchange. Se-
curity associations are not, however, created in the case of registration. The
R1 packet is used to announce the available services to the end-host. The
end-host then requests service as part of 12 packet and server acknowledges
this in the R2 packet. Registration exchange may also be done with update
packets if host already has a HIP association with the service provider.

2.2.4 Rendezvous

HIP proposes also a mechanism for initial rendezvous, for mobile hosts that
can not be reached through a static address. The rendezvous server func-
tionality is described in the HIP rendezvous draft [18]. The mobile host uses
the HIP registration protocol to create an association with an entity called
Rendezvous Server (RVS). As a result the address of the RVS can be used

CHAPTER 2. BACKGROUND 11

to initiate HIP base exchange with the mobile host as the RVS forwards the
traffic to the current location of the mobile host.

The functionality of the rendezvous server is similar to that of a Mobile 1P
home agent. The essential difference is that the rendezvous server operates
by forwarding only the initial 11 packet to the responder. The remainder of
HIP communication will then take place directly between the initiator and
responder hosts. The rendezvous server operation is presented in Figure 2.2

RVS
registration
association
11 11
R1
12
| R2 > R
<

Figure 2.2: HIP base exchange through Rendezvous Server (RVS)

2.3 Summary

This chapter presented two different technologies that both have significant
effects on security. Firewalls are already widely established network tech-
nology and provide uniform security for networks ranging from large orga-
nizations to single hosts. HIP, by contrast, is an emerging technology that
guarantees security for end-to-end communication between two hosts.

In general, these two technologies are used by different stake-holders in a
communication environment, and accordingly, for somewhat different pur-
poses. HIP serves the end-user, providing confidential, authenticated data
transfer. Meanwhile, the firewalls are mostly used by network administra-
tors, concerned with details of the traffic and whether the traffic is authorized
to enter the network. Oftentimes, some of the end-to-end security measures
may also hinder firewalls as traffic is not transparent to intermediate network
entities. Nevertheless, in case of wider scale deployment of HIP, these two
technologies need to coexist. The following chapter analyzes this issue more
closely.

Chapter 3

HIP Enabled Firewalling

The previous chapter introduced firewalls and HIP as well as the different
security provided by them. In this chapter, it is further analyzed how also
firewalls can benefit from the security provided by HIP. The chapter first
discusses the general effects that HIP as a protocol has on firewalls. It also
describes a basis for designing and implementing a HIP enabled firewall. In
practice, there are limitations on what features can be implemented by the
firewall solution of this thesis. Some of the features may not be implemented
even by the existing HIP protocol implementations. Therefore, this analysis
covers a wider scope of issues than the implementation.

Three different types of middleboxes, and accordingly firewalls, are identified
in relation to HIP [32]. The HIP unaware firewalls are the current firewalls
that do not provide support for HIP. Transparent firewalls are firewalls that
are HIP aware, but operate implicitly from the end-host point of view. The
third category is registration requiring firewalls that explicitly communicate
with end-hosts. The actual implementation of the thesis is a transparent HIP
aware firewall. However, both HIP aware firewall types are discussed here.

3.1 HIP with firewalls

One of the design objectives for HIP is that the protocol needs to cooperate
with different middleboxes [21, 22|. HIP does provide strong security for
data authentication, confidentiality and integrity. Yet, despite the traffic
confidentiality, all essential information for HIP association flow identifier
is visible to intermediate network entities. Furthermore, HIP is not only
comprehensible to middleboxes, but enables them also to take advantage of

12

CHAPTER 3. HIP ENABLED FIREWALLING 13

the security features it provides [21].

This chapter describes the basic functionality of a HIP enabled firewall. Al-
though HIP has several benefits for firewalls, some difficulties also exist.
Therefore, the chapter suggests some possible changes for better cooperating
with middleboxes.

Lot of this chapter also applies to other middleboxes that need to keep up
state of the HIP association and that benefit from authenticating the state
changes. An example of such middlebox would be HIP enabled Network
Address Translator (NAT). NAT and firewall functionalities are in fact often
paralleled in the referenced HIP literature.

3.1.1 Basic Functionality

The basic functionality of a HIP enabled firewall is to perform traffic filtering
based on HIs. HIs are in practice presented with HITs. In the context of
firewall, HIT is a convenient identifier to be used for example in expressing
access control information. HIT is also a natural selection as the flow iden-
tifier for HIP traffic. Filtering also concerns the ESP data traffic relating
to the HIP control traffic. This implies that the firewall must be stateful in
order to properly filter all HIP traffic.

The actual data traffic is carried over IPsec ESP. The IP addresses and the
SPIs of the destination end-points can be used to identify the flow with ESP
traffic [34]. The data traffic flow identifier can be first deduced from the base
exchange packets. The initiator sends out its SPI in the 12 packet and the
responder delivers its SPI in the R2 packet. During the lifetime of the HIP
association, the update packets have to be monitored to keep track of the
changes in end-point SPIs and the IP addresses they use.

Opportunistic Mode with Firewalls

One consideration with the HIP base exchange is that the opportunistic
mode may be problematic with firewalls. For the most part the issue relates
to security policies and can be tended to by choosing firewall rules with
consideration for this. The firewall security policy may define which hosts
are allowed destinations for traffic. However, the destination host identity of
a HIP I1 packet using opportunistic mode can not be determined. In this
case, the firewall should discard the packet if it can not verify the destination
HIT of the packet against that in a firewall rule.

CHAPTER 3. HIP ENABLED FIREWALLING 14

This kind of situations may be avoided, if destination HITs are not defined
for hosts that are likely to be contacted with opportunistic mode. These
hosts might include for example general purpose servers that are contacted
by clients that are previously unaware of the server.

The opportunistic mode has effects also on stateful filtering as the destination
HIT is used in the flow identifier. When the destination HIT of the I1 packet
is not available a HIP enabled firewall could temporarily use the destination
IP address in the flow identifier. After intercepting the corresponding R1
packet the firewall would fill in the missing HIT value. Again, this could
be a firewall policy issue whether a firewall may establish state without the
responder HI.

In the case of a registration requiring firewall, the NOTIFY parameter could
be used for signaling about failed I1 packets. The NOTIFY parameter defines
a message type for informing a peer host when opportunistic mode fails due
to policy of the host. This could also be used by an intermediate firewall as
part of the registration packets.

Authentication of HIP Traffic

As first pointed out in [22] and further discussed in [35, 34|, the HIP signa-
tures are visible to intermediate network entities. This allows HIP enabled
firewall to authenticate the senders of control messages by validating the
signatures. This property makes HIP traffic essentially different from other
protocols from the point of view of a firewall.

Naturally, the traffic authentication also implies that the state information
maintained by the firewall itself is in fact valid. This is important as HIP
control packets are used to create state information that enables traversal of
the HIP data packets.

For authenticating the packets the firewall needs to be aware of the end-point
Hls corresponding to the HITs. As HITs are used in the access control list of
the firewall, the HI relating to each HIT can also be defined. Furthermore,
the responder HI is carried unencrypted in the HIP base exchange R1 packet.
A firewall is therefore able to intercept the HI from traffic and to verify the
responder signatures.

By contrast, the initiator HI is delivered encrypted in the 12 packet of the
base exchange. This is done to protect the privacy of the initiator by not
revealing the identity to outsiders. The validity of this reasoning is, however,
questioned in [5]. It is further suggested that the initiator HI should be

CHAPTER 3. HIP ENABLED FIREWALLING 15

transmitted unencrypted for the benefit of intermediate middleboxes.

Proper authentication of traffic has also implications to basic firewall func-
tionalities. Traditionally, stateful firewalls have traced the details of different
protocols to filter out packets that can not be a part of a valid, established
connection. Despite of this, it is still possible that a packet that looks per-
fectly valid is spoofed. This could happen if an attacker is located on the
connection path and is equally aware of the connection state. Furthermore,
the firewall must then store much of the protocol logic and is more prone
to errors. The communication between end-hosts is therefore increasingly
dependent on the middlebox functionality.

In effect, HIP provides a more straightforward method that reliably authen-
ticates the sender. This also simplifies the role of firewall as a middlebox, as
most details of the protocol logic can be kept only at the end-hosts. However,
a HIP enabled firewall needs certain level of protocol state keeping. This is
necessary for being able to obtain necessary information for recognizing the
ESP data packets of the connection.

3.1.2 Registration Protocol

The HIP registration protocol was already briefly introduced in Chapter
2.2.3. One group of the systems that could benefit of the registration protocol
are middleboxes, such as firewalls. In fact, the registration protocol was first
discussed in the context of middleboxes |33]. The middlebox traversal using
registration protocol is further specified in the NAT and Firewall Traversal
for HIP -draft [34]. Also, a prototype of the registration protocol has been
implemented and is presented in [32]. The use of registration protocol essen-
tially separates HIP aware middleboxes as implicit or explicit middleboxes
as categorized in [9].

As described earlier, the registration protocol reuses the HIP base exchange
procedure. This may be initiated by the end-host either explicitly sending
an I1 message to the firewall. Alternatively a firewall may intercept an I1
message intended for the responder. In either case, the firewall then responds
with R1 message as with regular base exchange. During the registration pro-
tocol exchange, the firewall inspects whether the traffic is allowed to traverse
according to the security policy. If so, the firewall finally acknowledges the
end-host’s request.

A HIP enabled middlebox should not introduce new Denial of Service vul-
nerabilities, as pointed out in [33, 32|. Accordingly, the middlebox should be
able to authenticate the end-point before creating state. The base exchange

CHAPTER 3. HIP ENABLED FIREWALLING 16

procedure provides same benefits to the registration as to overall HIP. Both
the firewall and the end-host can authenticate each other. Cost is imposed on
the initiating end-host and the firewall does not need to create state before
verifying the puzzle solution and authenticating the end-host. Extending
these feature to firewall traversal, prevents firewalls from becoming the weak
point of the HIP protocol.

Besides establishing the registration, also terminating it has significance. The
registration uses a soft-state approach, where the registration times-out and
must be periodically renewed. This increases the freshness of the state in-
formation in middleboxes. An example of the advantages here is presented
with HIP mobility in Chapter 3.1.4. The registration may also be cancelled
by either party. This could be useful for an end-host that wishes to stop
receiving unwanted traffic in an expensive wireless environment [33].

In practice, traffic may need to traverse several firewalls, which would cause
several associations to be considered in an individual firewall. An end-host
would be required to register with several firewalls, for instance, the firewalls
protecting the networks of the end-host and the peer. Therefore, the firewall
functionality must recognize also the other registration associations, as well
as, the actual HIP association. This scenario is presented in Figure 3.1.

registration

I-FW(i) registration

gl | -

< > - I-FW(r)
FW(i) R FW(r) HIP R
I-FW(r) v association

| P [

- »

I-R I-R

Figure 3.1: Associations between different network entities and the state
maintained by the firewalls for each association.

Initializing the registration directly between the initiator end-host and a fire-
wall may cause same problem as the opportunistic mode. Also in this case,
the HIT of the actual responder host is not conveyed to the firewall. Due
to this, the case where a firewall intercepts the I1 packet intended for the
responder host should be favored. This allows firewall to make the access
control decision based on both the source and destination HITs. Further-
more, in this case the initiator does not need to have explicit knowledge of
the firewall before initiating the connection. Alternatively, the desired desti-
nation HIT would need to be conveyed as part of the registration. However,
the registration protocol as such can not accommodate the destination HIT

CHAPTER 3. HIP ENABLED FIREWALLING 17

value as services are negotiated with eight bit registration types.

3.1.3 HIP Rendezvous Service

Initializing HIP association may include use of a rendezvous server, RVS, as
described in 2.2.4. A logical consequence of the rendezvous is that the IP
addresses of the I1 and R1 packets may not be consistent. The destination
addresses for the ESP flow identifiers are therefore best taken from the 12
and R2 packets carrying the SPIs.

Topologically there are different scenarios from the point of view of a firewall.
These depend on whether the rendezvous server or either of the end-hosts,
or a subset of these three is located in the network protected by the firewall.

In a case where either the rendezvous server or both the initiator and the
responder are protected by a firewall, the firewall only detects the I1 being
sent to rendezvous server and forwarded back to the responder. In this case
the firewall needs to remove the state information created for the connection.

A registration requiring firewall has an additional consideration in one par-
ticular scenario where either the responder or both the rendezvous server and
the initiator are located in the network protected by the firewall. When the
rendezvous server forwards the packet it may need to also rewrite the source
address of the packet. Otherwise, the packet may be rejected by ingress fil-
tering as having a forged source address. In this case, the rendezvous server
inserts into the packet a FROM parameter containing the original initiator
address. A registration requiring firewall must then use the address of the
FROM parameter, if one is present, in sending the R1 registration packet to
the initiator.

3.1.4 Mobility and Multihoming

As further described in the HIP mobility and multihoming draft [24|, HIP en-
ables host mobility and multihoming by allowing hosts to signal each other
about the changes in their network addresses. Moreover, HIP allows each
host to have a set of addresses through which it communicates. These ad-
dresses are grouped under one or more Security Associations (SA) that HIP
connection establishes. Consequently, a HIP enabled firewall needs to asso-
ciate a dynamic set of SPIs, representing the SAs, to a single HIP connection.
Each SPI may then include a variable set of IP addresses. The mobility and
multihoming draft does, however, define a preferred address that each host

CHAPTER 3. HIP ENABLED FIREWALLING 18

should announce. The preferred address should be the primary destination
address that peer hosts send data to.

One clarifying aspect is that each address is suggested to be associated to
its own SA. Alternatively a set of addresses that are expected to experience
faith sharing could be grouped under an SA. An example of this would be
the addresses of a same network interface that would be included under a
single SA. In some cases, communicating hosts may have different number of
interfaces they use for the connection. The main policy is, however, that the
SAs should even then be formed pairwise between the hosts.

The actual signaling procedure uses HIP update packets as depicted in Figure
3.2. Here a host moves to a new network and receives a new address. The
new address may be added to an existing interface or the new network may
provide network access point to a new interface. The information about the
SPI is included in a REA parameter, along with the address. In the latter
case the packet also include NES parameter as rekeying is performed.

The response packet from the peer includes acknowledgement for the previous
message, SPI or NES parameter and echo request parameter for address
verification. Therefore, this message is sent to the newly announce address.
This way also a firewall protecting the new location of the mobile host is
able to intercept it and obtain the peer SPI value. The draft mentions that
address verification could be skipped in some cases. It further warns that
this may lead to incompatibilities with middleboxes. A HIP enabled firewall
could also enforce the use of address verification. In that case, no data traffic
is allowed to a new address until the firewall has encountered the related
address verification packets.

For assuring the traversal of firewalls protecting the new location, the first
update message should preferably be sent from the new address. This is
not explicitly required in the draft. As a result, the firewall may not be
able to intercept the first update packet and can not acquire the SPI of the
mobile host. After that, also the following messages of the update exchange
would be blocked by the firewall as the connection is previously unseen. A
more complicated issue is announcing several new addresses in a same update
message. In this case, if the preferred address is among the addresses, it could
be preferred as a source address.

Another point of view is that of a firewall that protects the previous loca-
tion of the mobile host. Alternatively, the host can be multihomed and has
acquired new address for another network interface. If the newly acquired
address is used as the preferred address, traffic may not traverse the old
firewall any longer. In both cases the firewall is not able to intercept the

CHAPTER 3. HIP ENABLED FIREWALLING 19

HIP
association MN
CN
Change of network
access point
HIP
association
CN
FW MN

Packet exchange, when an existing interfaces changes address:
UPDATE(REA, SEQ)
[HIT(m), HIT(c), SPI(m), IP(m)]

UPDATE(SPI,SEQ, ACK, ECHO_REQ)
[SPI(c), IP(c)]

< UPDATE(ACK, ECHO_RES)

Packet exchange, when new interface is brought up in new network:

UPDATE(REA, NES, SEQ, Diffie-Hellman)
[HIT(m), HIT(c), SPI(m), IP(m)]

UPDATE(NES, SEQ, ACK, Diffie-Hellman)
[SPI(c), IP(c)]

UPDATE(ACK, ECHO_RES)

<

Figure 3.2: Packet exchange between mobile node (MN) and corresponding
node (CN). The figure presents HIP packet exchanges in two cases where
either existing network interface receives an address in the new network or
new network interface is brought up. Information extracted by the firewall
(FW) from each packet, is listed inside brackets.

remainder of the connection, including the close sequence. For practical rea-
sons, a transparent firewall might need to remove the connection state for
instance after a certain time of idle connection. This protects the firewall
from using memory resources for potentially non-existent connections. With
a registration requiring firewall, the state is automatically removed as the
registration times out.

CHAPTER 3. HIP ENABLED FIREWALLING 20

3.1.5 Asymmetric Routing

Asymmetric routing may cause problems with firewall state creation. In
certain cases, traffic between two end-hosts may travel along different paths in
different directions. This causes problems for networks with several firewalls
if incoming traffic traverses different firewall than outgoing traffic. In this
case neither of the firewalls is able to intercept the SPI values needed for
the connection state. This scenario is presented in Figure 3.3. The problem
of asymmetric routing with HIP has been introduced in [34| and is further
discussed in [32].

Fw1

PI(i)

ESP data
| SPI(r) R

R1

R2
SPI(r)

ESP data
FW2 SPI(i)

Figure 3.3: Asymmetric routing scenario.

One solution proposed is including the SPI value of the peer host to another
message that is sent back to the peer [32]. This way, the initiator SPT would
be included in R2 packet. For the responder SPI a special 13 packet would
have to be sent after the actual base exchange. Extending the base exchange
with one more packet is not, however, considered a desirable solution.

As another solution with registration requiring firewalls, a message for signal-
ing SPI values is proposed [32]. An end-host would use this SPISIG message
to send the SPI value it has chosen for the security association to the fire-
wall. This would, however, require that the end-host has explicit knowledge

CHAPTER 3. HIP ENABLED FIREWALLING 21

of the firewall. Even when a registration association is created, it is not
done with the firewall that will miss the SPI of the host. Furthermore, the
asymmetric routing may take place in both initiator’s and responder’s home
network. In effect, the end-hosts would have signal the SPI value to any
firewall experiencing asymmetric routing along the path from the peer to the
host.

Possibly a more straight forward solution would be combining the approaches
of the first and the second solution. As a result a host would use the SPISIG
message to signal the value chosen by the peer host. This way a host would
have knowledge of at least any registration requiring firewalls on the path.
This is presented in Figure 3.4.

Registration

L 11
association

FW1

12
SPI(i)

ESP data ESP data
SPI(r)

SPI(r) R

Registration
association

R2
SPI(r)

FW2

ESP data ESP data
SPI(i) SPI(i)

Figure 3.4: Asymmetric routing scenario with SPISIG signaling. Host signals
the SPI value of the peer host.

To conclude, the asymmetric routing is somewhat problematic issue for state-
ful firewalls. However, this problem is in no way HIP specific, but exists with
several other protocols as well.

CHAPTER 3. HIP ENABLED FIREWALLING 22

3.1.6 HIP Certificate Parameter

HIP protocol defines a parameter type for delivering certificates [22|. This
provides a generic method for certificate use, which can be further extended
for different purposes and can benefit a variety of different situations. The
actual usage of the certificates is left to be defined.

Using certificates with the firewall registration is first mentioned in [33] and
is further discussed in [32|. For authorization, Simple Public Key Infrastruc-
ture (SPKI) [12] certificates are suggested. The use of certificate parameters
is not explicitly mentioned in the registration protocol draft [19]. However,
the certificate parameter could be used as part of the registration protocol for
distributing information for authentication and authorization [32|. Certifi-
cates could be similarly intercepted also by transparent HIP aware firewalls
when they are not encrypted by the sender.

For firewalls, certificates could be an attractive mechanism for authoriza-
tion [12]. However, certificate revocation mechanisms could complicate the
system. The authorization information stored in the access control list will
need to include public key material for authentication. With use of certifi-
cates this authorization material can be limited to the public keys used to
issue authorization certificates to hosts.

As traffic is initialized the firewall can obtain the HI of the host from the
certificate along with the authorization information. The authorization in-
formation can then be used to allow certain type of firewall traversal. After
the connection is closed the firewall may clear the public key of the host from
its memory. This can considerably decrease the amount of data that HIP
enabled firewalls must store for the security policy.

In this case also management of a distributed firewall system would be more
efficient and straightforward. Authorization issued with a certificate takes an
effect instantly anywhere the certificate is used. Updating firewall rule sets
of several firewalls on the other hand require operations with several different
entities. Furthermore, certificate expiration times allow issuing rights for a
fixed period of time. In a traditional firewall this would require updating the
firewall rule set twice for also removing the authorization.

3.1.7 Potential Security Vulnerabilities

Traditionally stateful firewalls need to establish state after the very first
packet in order to associate the later packets to the same connection. This
consumes firewall resources and may cause a risk of similar DoS vulnerabili-

CHAPTER 3. HIP ENABLED FIREWALLING 23

ties that HIP helps avoid in the end-hosts.

In the case of HIP enabled firewall, resources can be exhausted mainly in two
ways. Firstly, the signature verification consumes CPU cycles in the firewall.
Secondly establishing state related to HIP associations requires memory.

With the initial registration a firewall may avoid the problem of early state
creation and the puzzle mechanism imposes a cost on the initiating end-host.
The difficulty of the puzzle may also be adjusted for different situations
such as for potential DoS attack. A transparent firewall may attempt to
alleviate problem with a suitable timeout value after which connection is
removed if valid 12 packet is not received. This is still problematic and no
directive timeout value can be deduced from HIP protocol, since state is not
established after I1.

The signature verifications can not be avoided when a firewall needs to au-
thenticate traffic. Performance analysis of cryptographic operations of a
HIP implementation indicates that especially the Digital Signature Standard
(DSA) signature creation and verification are relatively strenuous compared
to other operations [14|. The exact results may be implementation depen-
dent, but the general observations should be valid. HIP implementations are
also required to support the Rivest Shamir Adleman (RSA) as the public key
algorithm. The use of RSA benefits an intermediate firewall as the signature
verification is significantly faster than with DSA [29].

With well behaved end-hosts signature verifications are in many cases rela-
tively infrequent. In general, they are only needed at connection establish-
ment and when end-points change their set of network attachment points and
as the connection is closed. Nevertheless, a malicious host may cause addi-
tional signature verification attempts by sending spoofed HIP packets to the
firewall. This, of course, requires that the attacker is aware of some pair of
HITs that have an ongoing connection through the firewall. With end-hosts
the additional keyed-hash message authentication code (HMAC) in the HIP
packets can be verified with less effort. Unfortunately the HMAC verification
is not available for intermediate entities as it is based on the shared secret
between the end-hosts.

The traffic authentication only applies to control traffic, while data traffic is
simply recognized through the flow identifier. In effect, if a third party has
knowledge of the SPI values and IP addresses of the hosts it may create false
ESP traffic that penetrates the firewall. This causes additional traffic in the
network being protected, but the end-hosts will be able to discard spoofed
ESP packets.

CHAPTER 3. HIP ENABLED FIREWALLING 24

3.2 Scenarios for HIP Enabled Firewall

Following discusses general scenarios for a HIP enabled firewall. It provides
examples of scenarios where HIP seems to conveniently aid traditional firewall
functionalities.

A general consequence of HIP in firewall systems is that details of the upper
layer protocols are hidden from firewalls. Oftentimes organizations monitor
and filter traffic on different levels of the protocol stack and with different
protocols. On one hand HIP simplifies things and provides much needed
security. On the other, the firewalls will not have say on upper level issues or
the traffic contents. This may essentially change the role of firewall systems
in corporate and organization networks.

3.2.1 General Firewalling Scenario

One typical policy for stateful firewalls is to allow connections to be estab-
lished only from the trusted network. From the untrusted network the only
traffic allowed to traverse is then related to the established connections. In
effect, no unsolicited traffic from untrusted side is accepted.

As a result, the initiators are in this case hosts of the trusted network. For
a transparent firewall that does not require registration the initiators are
mainly the hazardous party of the connection. They pose a potential risk of
abusing the firewall state establishment. In the scenario where the initiators
can be assumed more reliable, also the risk of the DoS attacks is alleviated.

Furthermore, depending on the strictness of the security policy it may not
be necessary to authenticate the traffic from the trusted network. The risk
of a host impersonating another to penetrate a firewall is not as great for
hosts of the trusted network and little is gained by doing so. In this case, the
firewall rule set does not need to include the Hls of these hosts and memory
can be saved.

On the contrary to the initiator, the responder of the connection is located
in the untrusted network along with several potentially malicious hosts. Ac-
cordingly, it is more of a concern to authenticate the traffic of the responder.
The responder is also chosen from a vast group of potential hosts. Therefore,
it is favorable that the responder identity is available in the base exchange
packets and can be dynamically added to the state information. As a result
the firewall does not need to store the Hls statically. Instead, the information
most important for ensuring security is provided by HIP protocol itself.

CHAPTER 3. HIP ENABLED FIREWALLING 25

3.2.2 Road Warrior and Virtual Private Network (VPN)
Solution

Virtual Private Network (VPN) is a technology for securely interconnecting
networks that may be dispersed across Internet [15]|. It uses secure tunneling
mechanisms, such as [Psec, to transport traffic between the access points of
different networks. In effect, VPN creates a system which can be virtually
considered a single private network from security perspective. In addition,
individual end-hosts may connect to a network using the VPN solution. A
term road warrior is used for a user connecting to a corporate network from
varying external locations. In VPN the designated access points of the net-
work, VPN gateways, perform the encryption and authentication required
for achieving confidentiality and integrity of the traffic.

HIP can also be applied to a Road Warrior VPN scenario [23|. In brief,
the VPN-like solution would consist of end-hosts communicating securely
over HIP and designated HIP aware firewalls for enforcing access control and
authentication. HIP hosts would therefore take care of the encryption of traf-
fic. The centralized entity would only perform the cryptographic operations
necessary for authenticating traffic and control access to the network.

In case of HIP some functionality of the VPN gateway is shifted to the end-
hosts. This decreases the load on the centralized entity without compromis-
ing security. In case where end-host would explicitly require data encryption
for its traffic it would have to perform the encryption itself anyway. In
traditional VPN there would then be duplicate encryption. This is an ex-
ample of the classic end-to-end principle: a function should be implemented
by the end-host, whereas implementations in intermediate components may
only provide improvements [28|. Another apparent benefit of HIP is that it
provides solutions for mobility and multihoming in the process.

In this scenario the firewall would need to require registration from the remote
end-hosts wishing to connect to a corporate network. As the hosts initiating
the connection are in the untrusted network, there is a high risk that the I1
packets can be spoofed. Creating state at a firewall before authenticating
the initiator could easily cause possibility of a DoS attack.

3.3 Summary

This chapter analyzed different aspects of HIP that may have effect on firewall
functionalities. As a conclusion, HIP provides several benefits even though

CHAPTER 3. HIP ENABLED FIREWALLING 26

there are also problematic aspects. Reliable traffic authentication and the
transparency to intermediate network entities, are likely to enable developing
more reliable firewall functionalities. On the other hand, a HIP enabled
firewall must also consider different HIP functionalities in order to handle
the protocol traffic correctly.

The chapter also analyzed potential security vulnerabilities. The registration
protocol, defined for HIP, would be useful in providing additional security
for the firewall as the end-host can be authenticated before using firewall
resources on creating state. Asymmetric routing also continues to be prob-
lematic, even though possible solutions have been proposed. However, the
asymmetric routing is in no way HIP specific problem.

Chapter 4

Requirements

This chapter presents the requirements placed on a HIP enabled firewall solu-
tion. It includes both the functional requirements for the firewall implemen-
tation as well as the non-functional requirements. One source of constraints
are the general requirements defined for firewall technologies. For middle-
boxes, such as firewalls, HIP end-point identifiers and the visible signaling in
HIP provide new opportunities in filtering the intercepted traffic. Therefore,
another set of requirements as well as possibilities emerges from HIP.

The implementation is a generic firewall system with a simple management
interface. Therefore the implementation does not include defining rules for
individual security policies. Accordingly also the level of security provided by
the firewall depends on the security policy used. However, the firewall design
and implementation must not have additional flaws or weaknesses that would
weaken the security.

As the HIP standardization and protocol implementation is on going, the
scope of the implementation is in general limited to features covered by the
HIPL HIP protocol implementation [1]. This enables testing and verifying
the firewall features. One main restriction is that the HIPL currently only
supports HIP IPv6 traffic. Therefore also the firewall implementation will
be IPv6 specific. Linux is chosen as the platform, which presents practical
constraints. Nevertheless, the high level design of the solution must still be
generic enough to be independent of platform.

27

CHAPTER 4. REQUIREMENTS 28

4.1 Functional Requirements

The following presents the functionalities that a HIP enabled firewall must
provide. To depict the services provided by the firewall, the chapter describes
also example usage and firewall rules.

4.1.1 Firewall Policy Management

A firewall must provide a mechanism for defining the security policy by which
it operates. For this particular implementation, an elaborate user interface
is not necessary. Instead, firewall policy configuration may be done with a
simple configuration file that the firewall processes at start up. For further
development of the firewall management, the firewall should provide interface
for more interactive maintenance. This interface needs to provide functions
for updating the security policy of the running firewall, and accordingly need
to take concurrent operations into account.

The format of the security policy should be simple, axiomatic and well-
defined. The firewall policy is defined with a set of rules that define what
kind of analysis is performed and which packets are allowed to traverse.
Ideally the rule format would be also easy to learn and adopt by a user.
A desirable solution could be therefore provided by using a rule format of
an existing firewall solution as basis. The firewall implementation is done in
Linux environment. Furthermore, the Linux Netfilter /Iptables framework |3]
is a well-established and widely used firewall system. Therefore the syntax
and semantics of rules should preferably follow that of the Iptables rules [4].

The general format of a firewall rule is presented in Figure 4.1. Here the
HOOK defines through which of the hooks in networking stack (INPUT,
OUTPUT or FORWARD) the packets are received. The match defines the
packets that the rule concerns and TARGET defines whether the packets are
accepted or dropped. The match may be constructed from several different
options which all must match the packet properties for target to be executed.
Examples for rule options will be further presented in following chapters for
illustrating the firewall requirements.

HOOK [match] TARGET

Figure 4.1: Format of the firewall rule.

CHAPTER 4. REQUIREMENTS 29

The implementation needs to provide rule parsing for checking syntax of the
rules. Although the firewall should allow flexible expressive use of filtering
options, some limitations are needed in order to keep semantics of the rules
rational. This should, for instance, eliminate contradicting options, such as
defining incoming interface for a rule in OUTPUT hook. The firewall policy
management must provide this semantic inspection for rules.

4.1.2 Overall Functionality

For effectiveness of the firewall system it is essential that the firewall is able to
intercept all traffic that concerns it. This requires that the firewall software
has an interface to the networking stack of the communication system. The
HIP enabled firewall needs to be able to intercept all IP packets that carry
either HIP or ESP as payload. Furthermore, this should be done in different
branches of packet traversal. The firewall must have access to incoming and
outgoing packets as well as packets being forwarded. In addition, the firewall
must also be able to enforce that a given packet will be accepted or dropped.

4.1.3 Stateless Packet Filtering

Stateless packet filtering functionalities provide simple inspection of certain
properties of HIP packets. These properties include source and destination
HITs, the type of a HIP packet as well as incoming and outgoing network
interfaces. The properties may also be negated. Options for these function-
alities are presented in Figure 4.2.

-sr¢_hit [!] <hit value> src_hi <file name>
“dst_hit [I] <hit-

-type [!] <hip packet type>

-i [I| <incoming interface >

-0 [!] <outgoing interface >

Figure 4.2: Format of stateless filtering options.

CHAPTER 4. REQUIREMENTS 30

Access Control Based on Host Identities

Stateless packet filtering must also contain option for enforcing access control
based on the cryptographic identity of the host. Along with source HIT, a
rule may also define the corresponding HI, which will then be used to verify
the sender signatures. To ensure validity of the rule, firewall should also
inspect that the HI matches the host identity, before accepting the rule.

4.1.4 Stateful Packet Filtering

Stateful packet filtering provides filtering based on the connection state.
Stateful packet filtering can be used with the state option and by defining
the state (NEW or ESTABLISHED). This command may also be combined
with other filtering options to match for example new connections that have
certain source or destination HIT. Format of the state option is presented in
Figure 4.3.

-state |!| <state> —verify responder —accept mobile

Figure 4.3: Format of the state option.

The vital issue with stateful filtering is determining which packets are ac-
tually part of the connection. The firewall should be able to ensure that
the state acquired from the protocol packets is valid and not a result of
spoofed packets. With cryptographic identities and signed protocol packets,
HIP provides effective methods for ensuring this. The traditional measure
for analyzing packets is maintaining protocol state information and compar-
ing received packets with that. Also HIP enabled firewall needs to provide
suitable level of protocol state checking.

HIP provides possibility to dynamically obtain the responder HI from base
exchange packets as the connection is initialized. Verifying signatures of the
responder assures sender invariance [34] in cases where the responder identity
is not previously known in the firewall policy. The firewall should provide
this as an optional feature of stateful connection tracking. Crucial part of
obtaining the responder HI is examining that the public key in fact produces
the responder HIT as hash value.

HIP protocol contains two different data streams; the protocol data and
the payload data carried in ESP. Firewall needs to identify the protocol

CHAPTER 4. REQUIREMENTS 31

traffic using the HITs as flow identifier and data traffic using the SPIs and
destination addresses [34]. The SPI values are intercepted as base exchange
or rekeying packets are analyzed. When connection is closed by the end-
points with close packets, the connection state must be removed.

When a mobile host moves to a network protected by a firewall, the signaling
data will in some cases traverse the firewall. The firewall should establish
state from mobility signaling when allowed by the security policy, and when
it is made possible by the mobility signaling

The firewall must also allow rendezvous traffic to traverse when it is autho-
rized according to the security policy. The rendezvous functionality is not,
however, currently completely supported with the HIP reference implemen-
tation. However, the scenarios of rendezvous traffic should be considered in
the design.

4.2 Non-Functional Requirements

Some non-functional requirements were already identified when presenting
the functional requirements. For example, properties of the rule format were
discussed. This section further defines which non-functional requirements are
essential for the design and implementation. In addition, it is also analyzed
why some general requirements may not be as important for this particular
system.

4.2.1 Requirements Regarding the Design

General requirements for any architecture include that it is modular, clear
and as simple as possible. The design also needs to model the problem domain
and interactions within it. In many cases the viability of architecture is truly
weighed only after the design needs to be changed or maintained.

As HIP is an emerging technology and the standardization is ongoing, changes
to the protocol are expectable and even likely. Even during writing of this
thesis different aspects of the protocol have been modified as new versions of
the drafts have been published. This affects, besides the implementations,
also other systems concerned with the details of the protocol, such as HIP
aware firewalls. Accordingly this stresses the designs of these systems as
changes are adopted within the existing architecture.

The design of a HIP enable firewall should take this into account. As a result

CHAPTER 4. REQUIREMENTS 32

the design should be modular by nature. This way the structure of the design
is clear as unnecessary interconnections between different elements will not
complicate the design. A modular design is often also easy to extend to
support new features and functionalities. Another constraint could be that
the parts of the design are generic and could therefore be reused for new
emerging aspects.

Potential changes concerning HIP include for example new types of pack-
ets and parameters in the core protocol. Alternatively, existing parameters
or packets may also be removed or modified. Also, alternative methods for
performing functions, such as new algorithms, could be adopted. The regis-
tration extension also enables introducing new types of services relating to

HIP.

For an end-host it may be adequate to only implement a subset of function-
alities and operate using those. A middlebox analyzing traffic of other hosts
may, on the other hand, come to contact with different types of traffic. In
general, a middlebox should not block legitimate traffic that is in accordance
with the protocol definition.

4.2.2 Security

The very purpose of a firewall is to provide security for an external user.
In general, the field of the thesis for a large part concentrates on issues
relating to security. Chapter 3 discussed what kind of security measures
are possible and on the other hand necessary in the context of HIP. The
functional requirements further defined what kind of functionalities a firewall
needs to provide in order to deliver these security measures. In addition to
these the internal security of the firewall is also important. This includes for
instance reliable management of the firewall rules.

4.2.3 Secondary Requirements

There exist a number of qualities that are in general desirable for a system
of this kind. These include for example efficiency, usability and manageabil-
ity. These are essential properties for a firewall system used in a production
level environment. However, the scope of this thesis limits to a prototype
implementation that demonstrates the feasibility of this technology. In this
context, some of the requirements important to production level implemen-
tations are secondary concerns for this system. For future development of
the technology it is however important to also identify these properties.

CHAPTER 4. REQUIREMENTS 33

Efficiency of a firewall system is an essential goal. The risk is that a firewall
system will create a bottleneck for network traffic to and from the secured
network. To an extent this can be controlled with CPU power of the firewall.
The design and implementation of the firewall system play a role here as these
factors can both hinder and support the efficiency of a system. Furthermore,
HIP firewall functionalities include some potentially strenuous operations,
such as the verification of cryptographic signatures.

Usability was, to some extent, discussed with the format of the firewall rules.
Another aspect of usability is the manageability of the firewall system. This
includes the system used for altering the firewall security policy. One as-
pect is the availability of the management interface and includes also remote
maintenance of the firewall. The necessary user interface for this system is
rather minimal. However, further development of a larger scale management
interface should be addressed by providing a necessary interface for updating
the firewall rule set.

4.3 Summary

The functional requirements defined by this chapter included management
of the firewall policy as well as the actual packet filtering functionalities.
The firewall filtering options were also defined and used here to illustrate the
different features provided by the firewall.

The firewall policy management includes inspecting the validity of the rules
and provides necessary functionalities for managing the rule set. Different
packet filtering functionalities include stateless filtering as well as stateful
connection tracking. The stateless filtering options can be used for filtering
packets based on source and destination HI'Ts, HIP packet type and incom-
ing and outgoing network interfaces. Also the source HI may be defined for
verifying the HIP packet signatures using the given public key. The state
option is used for filtering based on connection status. It also contains ad-
ditional options for verifying signatures of responder packets and accepting
connections of mobile hosts.

In addition, different non-functional requirements were identified. These in-
clude properties of the design and general security aspects.

Chapter 5

Design

Firewall technologies are in general quite well established but have not been
actually standardized. This chapter uses some available reference architec-
tures in analyzing different architectural considerations in the context of HIP
enabled firewalling.

5.1 Design Alternatives

Two high level design alternatives are presented. First one extends the exist-
ing Linux Netfilter firewall solution [3] and second implements an indepen-
dent HIP firewall prototype. Former of these was the initial choice for design
and was therefore relatively extensively studied. The latter was, however,
selected as it better suited the setting of the project.

Even in the independent solution the Netfilter framework has its influence.
It is used for receiving packets from the networking stack and the general
format of rules has been adopted for the independent implementation. In
addition, the Netfilter architecture has affected some of the design choices
of the independent solution. Hence, this chapter also describes the Netfilter
architecture in more detail.

5.1.1 Linux Netfilter Extension

Extending the Linux Netfilter [3] for HIP firewalling has several benefits.
Accordingly, Netfilter was initially considered as a good candidate for basis
of the design. In general, it is freely available and designed to be extensible.
Netfilter is also the designated and established place for firewall and NAT

34

CHAPTER 5. DESIGN 35

functionalities in Linux. Therefore, it could be desirable to integrate also
the HIP functionalities into the existing implementation instead of imple-
menting an alternative firewall only for HIP based filtering. Using existing
implementation also provides the generic components, which would otherwise
have to be implemented separately. In the case of Netfilter, the Iptables user
interface would be available for modifying rules of the running firewall.

Drawbacks of Netfilter include mainly practical reasons and suitability for
the particular project. An important feature of HIP traffic filtering is the
state keeping for connections. Furthermore, the HIPL [1| HIP implemen-
tation, which is used as a reference implementation for the firewall testing,
currently only supports IPv6. The IPv6 stateful connection tracking in Net-
filter is, however, only supported in Usagi kernel and changing over to it
was not a desirable choice. Furthermore, the signature verification used for
authenticating end-points, could be more conveniently done in user space.

Following presents the overall architecture of the Netfilter framework as well
as architectural changes for extending Netfilter to support HIP traffic filter-
ing. Also the Iptables -management interface and the changes concerning it
are presented. The high level architecture of a possible solution is presented
in Figure 5.1.

KERNEL SPACE USER SPACE
IPTABLES
NETFILTER
Connection tracking HIP protocol /L HITngIe2§ion 4
module extension \r (ibipt_hip) \]_
(nf_conntrack) module c i
)) onnection
(ipt_hip) trackin
HIP extension extensigon
(nf_conntrack_ (libipt
roto_hi -
proto_hip) conntrack)

Figure 5.1: High level architecture.

CHAPTER 5. DESIGN 36

Netfilter Design

Netfilter is a framework enabling firewall and NAT functionalities in Linux. It
is implemented as a set of kernel modules, containing the core functionalities
and additional modules for extending Netfilter to support different protocols
and to provide additional features. The core functionalities manage the nec-
essary hooks in the protocol stack and manage calling functions of different
extensions. The Netfilter framework design is therefore quite modular and
extensible.

Netfilter interfaces to operating system protocol stack with a series of hooks
for receiving packets. This is represented in more detail in Figure 5.2. Fire-
wall management is conducted by specifying a series of rules for different
Netfilter chains. Packet filtering, which is the main focus of this thesis, can
be done in the input, output and forward chains referring to local in, local
out and forward hooks respectively. [27|

—blpre-routing l—PI ROUTING l—PI forward l——bl post routing I—}
| ROUTING |

A

\4

| local in | | local out |

Figure 5.2: Netfilter hooks and packet traversal [27].

Netfilter provides an interface that extension modules implement. The func-
tions include initializing and closing the module as well as a function for
checking validity of the Iptables rules. For the actual packet filtering the mod-
ule provides functions selecting packets and determining whether a packet
matches a given rule. [27]

HIP Protocol Extension Module

The HIP protocol extension module, also presented in Figure 5.1, enables
packet filtering of individual HIP packets. The filtering is done based on
packet properties such as source and destination HIT and packet type. The
extension module provides a standard Netfilter interface of functions, through
which it is called.

CHAPTER 5. DESIGN 37

Connection Tracking

Netfilter provides stateful filtering functionalities under a specified connection
tracking module. Under the connection tracking there are extension modules
for supporting tracking of different protocols.

The connection tracking module maintains necessary state information for
identifying connections between two end-points. The information is con-
tained in a data structure called nf_conntrack_tuple which includes IP
addresses, protocol and the original direction of traffic, as well as additional
protocol specific information. Tuples are contained in a hash table struc-
ture, where they can be efficiently searched and matched with packets. Each
connection, nf_conn structure, holds reference to two tuples, one for each
direction. Also a reference back to connection can be derived from a tuple
hash structure. The relations of these data structures are presented in Figure

2.3.

connection

AN

/ Connection table \

tuple_hash | tuple_hash tuple_hash

\ 4

tuple_hash

v

A A A y

tuple tuple tuple tuple

Figure 5.3: A simplified connection table structure of conntrack module.

Extending Connection Tracking Core

In the tuple, the main information for identifying the connection is based
on the source and destination IP addresses. HIP however provides end host
identities, that are independent of the location dependent TP addresses. To
accommodate this within the Netfilter framework the HIT needs to be used
as a flow identifier for the HIP protocol traffic. As the 128 bit HITs can be
conveniently stored in IPv6 address structures, the HIT could replace the
IPv6 address in the tuple. Also, a dynamic set of IP addresses needs to be

CHAPTER 5. DESIGN 38

associated with the flow. In effect, even though the Netfilter framework is
rather extensible, HIP implies changes to the more fundamental assumptions
in the architecture.

As HIP traffic contains two separate connections, the HIP protocol traffic
and the ESP data traffic, there needs to be a way to interconnect these
two flows. For this, the connection tracking provides a concept of related
connections. A protocol extension may implement and register a protocol
helper, which is used to point out the expected related connections [27|. In
the case of HIP, the protocol helper will create an expected ESP connection
with certain [P addresses and SPIs whenever such connection is possible.
This would occur when SPIs and IP addresses are exchanged during the base
exchange, readdressing or rekeying.

HIP Connection Tracking Extension Module

The HIP extension module for connection tracking needs to provide standard
interface of a connection tracking extension. That includes most importantly
the functions for defining the HIP specific part of a tuple, creating a new
connection and giving verdict whether a packet matches tuple.

The protocol helper functionalities are used to analyze the HIP signaling
data. This includes, the responder HI, the SPIs and changed IP addresses.
With this information the HIP connection properties and related ESP con-
nections can be updated, created or deleted when necessary.

HIP protocol specific information in the tuple data structure needs to include
the host identities, when available. The HI'Ts would be already stored in the
main part of the tuple holding the flow identifier.

ESP Connection Tracking Module

Extension for stateful tracking of ESP traffic is necessary as ESP is used for
carrying HIP payload traffic. With ESP traffic the flow is identified with the
SPI values and destination IP addresses. Consequently, the ESP protocol
specific part of the tuple structure contains the SPIs.

Iptables Management Interface

Iptables is a user space management interface for the Netfilter functionalities.
It provides means to view and alter the firewall and NAT rules for different

CHAPTER 5. DESIGN 39

Netfilter hooks. Iptables contains extensions corresponding to Netfilter ex-
tension modules. Each extension contains functions for parsing and checking
the validity of the inserted rules. [4]

Iptables user interface could be extended to support HIP traffic filtering by
implementing an Iptables extension library. This extension module would
contain options for HITs, HIs and HIP packet types.

For the stateful filtering the existing Iptables module handling connection
tracking would have to be extended with HIP specific sub-options.

5.1.2 Independent HIP Firewall Solution

An alternative for extending an existing solution is to construct a separate
HIP firewall system. The implications of this are twofold. Design choices
of an independent firewall are not bound to an existing implementation.
Consequently, the design and implementation may be chosen to better serve
the particular protocol instead of a generic design. Also the system may
be constructed in either user space or kernel space. Due to HIP signature
verification, a user space implementation is more desirable for the system.

Then again, a separate implementation may not be able to take advantage
of the generic parts of an existing solution. These include for example user
interface, the general framework and the interface to the protocol stack for
intercepting packet traversal. Fortunately, the Netfilter framework provides
a mechanism for user space applications to participate in the packet filtering.
The following section presents the resulting design in more detail.

5.2 HIP Enabled Firewall Design

Even though an independent HIP firewall implementation is chosen, the Net-
filter framework does contain some well-founded design choices. Furthermore
these design choices have been proved to work in practice. Therefore some as-
pects in the Netfilter architecture have been adopted also for the independent
solution.

While Netfilter provides a practical reference for firewall architecture, a more
conceptual model has also been studied [26]. The model presented is not
adopted as such, but is rather used for identifying different functional entities
and their interactions. These are further adapted to needs of this particular
system.

CHAPTER 5. DESIGN

40

The following chapters present the overall design of the solution. Essential
functional components from [26] are also identified in the design. The design

is also illustrated in Figure 5.4.

HIP ENABLED FIREWALL
Firewall Main Module q_)
Rule
A Management
Module
Filtering Module
Stateless
Filtering
Module
~
Connection
Tracking
Module
User space
\ 4 Kernel space
Netfilter
Framework
LIBIPQ

Figure 5.4: Overall design of the HIP enabled firewall.

The interactions

between components are shown with the arrows.

5.2.1

Firewall Main Module

The firewall main module contains functions for receiving packets for analysis
and issuing verdicts on whether the packets are allowed to traverse or not.
It uses rest of the firewall components for producing these verdicts based on

properties of the packets received.

CHAPTER 5. DESIGN 41

The main module contains mechanisms for interfacing the firewall to the ac-
tual communication system. This is referred as integration and enforcement
module in |26]. Integration and enforcement functionalities must guarantee
that the firewall is able to intercept the packet traversal in right parts of the
system protocol stack.

The firewall design uses the Netfilter framework for integration to the ac-
tual system. Netfilter module in turn contains necessary hooks in the Linux
networking stack through which packets are intercepted. The packets inter-
esting to the HIP firewall are directed to Netfilter QUEUE target, which is
used to transmit packets to user space applications. The firewall system uses
the LIBIPQ library to register for receiving queued packets as well as issuing
verdicts on them.

5.2.2 Firewall Policy Management

The firewall rules that define the security policy are contained by an entity
called rule set |26]. Here the firewall policy management module contains
also functionalities for managing the rules and verifying the rule syntax.

There are two basic entities interacting with the rule set. Firstly, the firewall
system needs to regularly read the rule set to determine faith of each packet.
Secondly, the firewall manager needs to set the rules for defining the firewall
security policy. For this a configuration file is used and is read in the firewall
system at start up.

Due to the minimal user interface, the policy management module also pro-
vides an interface for further development of the management system. The
interface consists of functions for altering the rule set of a running firewall.
These functions can be used to implement a more interactive user interface
for firewall management. The rule management also needs to provide neces-
sary synchronization for potentially concurrent operations.

5.2.3 Packet Filtering Functionalities

For the actual packet filtering mechanisms two different modules are identi-
fied [26]. The analysis module is used for conducting analysis on the packet
data. The decision module uses the firewall rules and result of the analysis
to determine whether packets are allowed to pass.

In this design these functionalities are contained as a single logical entity
under the main module of the firewall. The decision module calls different

CHAPTER 5. DESIGN 42

analysis functionalities based on the contents of each rule. The results are
then gathered to issue a final verdict on each packet. The result is finally
returned to the main module.

Different analysis functionalities include filtering based on identity (HIT and
HI), HIP packet type, incoming and outgoing interfaces and the Netfilter
hook, through which the packet was received. The stateful filtering module
is described in more detail below. The identity based filtering compares the
HIT defined in a rule with that found in the packet. Additionally rule may
define also the sender HI. In this case the HIP packet signature is verified
with the HI to authenticate the packet sender. In effect, the filtering module
also contains functions of an authentication module |26].

5.2.4 Connection Tracking

The connection tracking module is conceptually part of the analysis func-
tionalities. It is, however, separated to its own module, as it contains more
elaborate and extensive analysis. The connection tracking module contains
functionalities necessary for maintaining state information about HIP asso-
ciations. The packet filtering module calls connection tracking when packets
need to be filtered with the state option. Still, all HIP packets are ana-
lyzed by the connection tracking functionalities, independent of the filtering
options used. This ensures that necessary information regarding the HIP
association is obtained from the packets.

In addition, the connection tracking provides similar signature verification
functionality as the authentication done in the packet filtering module. Here
the responder HI is extracted from HIP traffic dynamically. It is then used
to authenticate the end-point in further communication. The authentication
here has different nature than in an actual authentication module. The
identity itself is not essential, as it is when defined in a firewall rule. Instead,
the connection tracking attempts to assure the property of sender invariance
|34]. This guarantees that, independent of the actual identity, the traffic
can be trusted to be sent by the same end-point throughout the connection.
Accordingly the state information maintained by the firewall is authenticated
and reliable.

CHAPTER 5. DESIGN 43

5.3 Summary

This section first described the two overall design alternatives that were
studied for the firewall solution. First of these, extending the Linux Net-
filter framework, would have included implementing a HIP specific extension
module as well as modifying the existing connection tracking mechanisms to
support HIP.

The second alternative, a separate HIP firewall solution, was selected due to
better suitability for the project. Still, some well-founded design choices were
adopted from the Netfilter framework also for this design. The main com-
ponents of the design include the firewall main module, the firewall policy
management, the packet filtering module with stateless filtering functionali-
ties and the connection tracking module.

Chapter 6

Implementation

The overall architecture and the main components of the firewall solution
were presented in the Chapter 5. This chapter presents the implementation
of the firewall solution in more detail. The external components, that the
implementation depends on, are first summarized. Implementation of each
firewall component is then presented. The chapter gives examples of the
data structures used and presents selected core functionalities in more de-
tail. Finally, a sequence diagram is used to illustrate larger entities and the
interconnections from functional point of view.

6.1 External Components

The Implementation relies on certain external libraries and systems. These
include LIB TPQ library from Netfilter framework, GLib library and the
HIPL [1| HIP protocol implementation. Of these, the LIB IPQ is used for
receiving packets sent to the host and for issuing verdicts on them. The GLib
library provides useful data structures and methods for manipulating them
as well as other necessary functionalities. GLib is used for example for list
structures and their manipulation and for thread and time functionalities.

HIPL provides several data structures and functions relating to HIP proto-
col and for manipulating HIP packets. For instance, HIPL contains detailed
data structures representing the HIP protocol packets and the different pa-
rameters. It also includes functions for searching parameters in HIP packets
and for example verifying the packet signatures.

44

CHAPTER 6. IMPLEMENTATION 45

6.2 Firewall Main Module

As described in Chapter 5, the main module ties together the other com-
ponents of the firewall and calls each component as necessary. The main
module initializes the necessary components and starts up the firewall. This
includes also issuing calls to parse the firewall rules from a file defining the
firewall security policy. The file name is defined as an argument when firewall
is started. The main module also uses the LIB_IPQ interface for register-
ing the firewall software to receive the packets intercepted by Netfilter. For
the actual packet filtering the main module receives the packets through the
LIB IPQ interface. It then issues calls for analyzing each packet and finally
delivers verdict for each packet back to the Netfilter system.

6.3 Packet Filtering Functions

Packet filtering functions are in practice included in the main module, but are
logically a separate set of functions. Packet filtering contains simple functions
that analyze different properties of the packet in relation to a certain option
of a firewall rule.

Source and destination HITs are matched by a function comparing the HI'T
values. Source HI may also be defined in a firewall rule as a sub option to
the source HIT. Source HI matching verifies that the packet signature has
been created with the HI defined in the rule. In effect, this authenticates
the packet. HI matching uses the signature verification functions provided

by HIPL.

Other filtering functions are used for matching the type of packet and the
incoming and outgoing network interface of the packet. Information about
the network interfaces is passed to the firewall from the Netfilter system along
with the packet.

6.4 Firewall Policy Management

Firewall policy management contains data structures representing firewall
rule and its different options. It also provides functions for parsing a rule
from character string representation to the rule data structure and for ma-
nipulating the set of rules that define the firewall security policy.

CHAPTER 6. IMPLEMENTATION 46

6.4.1 Data Structures

The rule data structure contains information defining which packets it is
applied to and what should be done with these packets. It consists of different
options, the hook through which the packet came in and an accept value to
indicate whether to accept the packet or not. When an option is defined in
the rule it contains a pointer to a structure defining the details of the option.
For undefined options the pointer value is set to null. A firewall rule may
also define a so called default target for a certain hook. This rule contains

none of the options and in effect matches any packet coming in from a certain
Netfilter hook.

An example of an option is shown in Figure 6.1 along with the actual rule
structure. All the option structures follow a same basic format but are dif-
ferentiated by the type of data and possible sub option values they store. In
the option structure the value contains the actual value of the option and
boolean indicates whether the option was negated with ’!".

struct hit_option{
struct in6_addr value; //hit value
int boolean; //0 if negation, else 1

};

struct rule{

struct hit_option * src_hit;
struct hit_option * dst_hit;
struct hip_host_id * src_hi;
struct int_option * type;
struct state_option * state;
struct string_option * in_if;
struct string_option * out_if;
unsigned int hook;

int accept;

};

Figure 6.1: Rule data structure and an example of an option structure.

The option data structures are intended to be generic, so that they could
be used for variety of different options that need to store a value of certain
data type. For example string_option data structure may be used for any

CHAPTER 6. IMPLEMENTATION 47

option that has a string value. The hit_option could be alternatively used
for storing options with an IPv6 address.

6.4.2 Parsing Rules

As the user defines rules in string representation, it is necessary to parse them
to the internal representation used by the firewall. This includes ensuring
that the values defined for options are meaningful and that the overall syntax
and semantics of the rule are correct.

For parsing source or destination HI'Ts, the HIT values are converted from
strings to in6_addr structures. Source HIs are defined with a path to a
file containing the public key. When parsing HI option, it is first ensured
that a file exists. The file name must contain either “ dsa ” or“ rsa ” for
identifying either DSA or RSA as the algorithm of the public key. The public
key is then read into a hip_host_id structure. This uses modified functions
from HIPL for loading the key from a file. The implementation then checks
that hash value of the HI equals the source HIT for which the source HI was
defined.

For type option and for hook the string values are matched against the type
and hook names and converted to integers. Input and output interfaces are
string values that are limited by the maximum length.

6.4.3 Interface for Firewall Management

The firewall policy management module contains a simple interface which can
be used for extending the firewall management. Currently, the firewall rules
may only be inserted through a configuration file, which is read in during
start up. In a more advanced system the firewall rules should be updated
interactively at run time. The interface follows the format of the Iptables
user interface in the Netfilter system. It includes methods for inserting a
rule, deleting a rule as well as listing and removing all rules, as illustrated in
Figure 6.2.

Managing the rules concurrently, as the firewall is operating, requires syn-
chronization. There could be potentially multiple threads reading and writing
into the rule lists, while the firewall analyzes the rules for filtering a packet.
The rule lists must remain consistent during these operations. The situation
can be modeled as a classic readers and writers problem and can be controlled
with synchronization mechanisms presented in [11]. The solution guarantees

CHAPTER 6. IMPLEMENTATION 48

void insert_rule(const struct rule * rule, int hook);
int delete_rule(const struct rule * rule, int hook);
GList * list_rules(int hook) ;

int flush(int hook);

Figure 6.2: Functions for managing firewall rules.

that readers and writers may not operate simultaneously, but several read
operations may occur concurrently. In the case of firewall, write operations
would be updates for firewall rules. The read operations would be performed
by both the rule managing and the firewall packet filtering.

Within this solution there are two choices of preference. The solution may
favor writers, so that when ever a writer wishes to write, no new reader is
allowed to read before the write operation has occurred. Alternatively read
operations may be prioritized and no reader has to wait unnecessarily if write
is not taking place at the moment. The first solution decreases concurrency
and is potentially less efficient. The latter solution could, however, result in
writers waiting indefinitely if read operations occur as a steady stream.

The first solution, enabling faster writes was selected. The firewall man-
agement is expected to be rather infrequent and the management may be
controlled by an administrator. Thereby, write operations are not likely to
burden a firewall excessively. Furthermore, the read operations occur when-
ever a packet needs to be filtered and are potentially a steady stream of
operations. Also, this load depends on network traffic and can not be easily
controlled, unlike the management operations. In effect, the solution prevents
large network loads from blocking the necessary management operations.

6.5 Connection Tracking

Main function of connection tracking is to maintain necessary state infor-
mation for recognizing packets that belong to a connection. HIP protocol
packets are simple to manage as they all carry source and destination HITs
and can be authenticated when HI is available. With data packets the flow
identifier must be deduced from HIP protocol packets when the association
is created or updated.

Connection tracking provides two public entry point functions that analyze
packets. The filter_state function is used for analyzing packet in relation

CHAPTER 6. IMPLEMENTATION 49

to a given state option. The conntrack function is called for packets that
are not filtered by a state option, but must be analyzed in order for the
connection tracking to be aware of any changes in the connection state. Both
of these functions call same internal analysis function for the packet. The
analysis performed with each packet is more closely described in the following
section.

6.5.1 Functionality

HIP connection is initialized with a base exchange procedure. When analyz-
ing the base exchange packets, the connection tracking code extracts data
that will be needed in further filtering of packets of the particular connection.
This data includes SPIs and destination addresses used in the data packets
and the responder HI, when this is required in a state option of a firewall
rule. During base exchange, necessary data structures are also created for
the connection.

When the base exchange is completed the connection tracking code is able
to recognize the ESP data packets relating to the connection. Also when
verifying responder packets is required in the filtering rules, the connection
tracking uses the HI information to authenticate the responder packets.

Connection tracking analyzes update packets sent in the HIP connection.
When a new destination address under an SPI or an altogether new SPI is
announced by a host this information is stored in the ESP data structures
related to the connection. The connection tracking must take into account
that the two end-points each maintain separate state information. Due to
this, changes announced by one party can not be considered to be known by
the other party immediately. This affects for example rekeying situations,
where old information must remain valid until the other end-point has ac-
knowledged the new information. In practice, data packets with old SPI,
could still be on the way when new SPI is announced. This principle is also
discussed in [36] in the context of TCP protocol.

The HIP connection closing was still under development in the HIPL while
the firewall was implemented. Due to this, connection timeout checking was
developed as an alternative method for being able to remove HIP connections
from the firewall memory. The implementation allows setting a timeout value
after which unused connections are removed. If zero or negative value is
specified, the timeout checking is not performed.

The connection tracking module inserts a time stamp into connection data
structure. The time stamp is then updated whenever packets of the connec-

CHAPTER 6. IMPLEMENTATION 50

tion are encountered. For detecting idle connections these time stamps are
periodically checked against a certain timeout value. The timeout value is
defined as an argument when firewall is started and passed from the main
module to connection tracking when timeout checking is initialized. When
idle time of a connection exceeds the timeout value the connection and all
data relating to it are removed. In practice the timeout checking is imple-
mented with a separate thread.

6.5.2 Data Structures

Connection tracking models the connections with structures similar to those
of Netfilter connection tracking. The structures are illustrated in Figure 6.3.
In the HIP firewall, the model does not need to be as generic as with Netfilter
framework as only a single protocol is supported. Accordingly, for instance
relating HIP and ESP data is done in more straightforward manner.

Connection
original _ reply . . _l
Tuple | Tuple |
| set of HIP connection table |
ESP tuples

I \lHIPtuple | |H|Ptuple | |HIPtupIe | |
A Y

| Izm\ \: |
table
IlESP tuple | |ESPtupIe | ESP tuple |

Figure 6.3: Connection tracking data model. Arrows represent pointer ref-
erences between the data structures.

As with Netfilter, a tuple data structure contains information that directly
translates into information carried by a packet. The implementation provides
tuples for both HIP and ESP packets. The tuples are contained in HIP and

CHAPTER 6. IMPLEMENTATION 51

ESP connection tables. As a packet is received the connection tracking code
searches for a HIP or ESP tuple in connection table that matches the packet.
If a tuple is found, there exists a connection into which the packet belongs
to.

A joint tuple structure contains the HIP tuple and all the ESP tuples of
a certain direction of a connection. The HIP and ESP tuples also have
pointers back to this joint structure. The actual connection contains two
tuples representing the two directions of the connection. Both of these tuple
structures also contain pointer to the connection structure as noted in Figure
6.3.

The HIP and ESP connection tables are implemented as linked lists. This is
adequate choice for this type of application. However for a more performance
critical implementation, a hash table would be more efficient data structure
as elements could be searched in constant time. For HIP packets the HIT
values could be used to calculate hash value for a tuple and for ESP tuple,
the SPI value and the destination address could be used to produce unique
hash value.

6.6 Interaction Between Components

This section summarizes the overall functionality of the system. It also de-
scribes how different parts of the system interact together. This is illustrated
in Figure 6.4.

At start up the main module uses LIB IPQ to first register the firewall appli-
cation to receive packets intercepted by Netfilter. It also issues call to firewall
policy management to process the file defining the firewall rules. Based on
this processing the policy management module forms a list of rules for each
of the Netfilter hooks, INPUT, OUTPUT and FORWARD. These rules can
then be queried by the main module and the packet filtering functionalities
as necessary. Finally, the main module calls the connection tracking module
to initialize the connection timeout checking functionality.

After this the firewall is ready to start receiving and processing packets. From
Netfilter, the firewall receives packets which are defined to be queued for
processing of registered user space applications. The packet type is analyzed
to determine whether packet is HIP or ESP packet or of some other type.
Filtering function is called for HIP and ESP packets.

Filtering function, in turn, calls policy management for getting the firewall

CHAPTER 6. IMPLEMENTATION 52

f—— | I I I

ipg_set verdict()

| MAIN IRULE I FILTERING | CONNECTION I
MANAGEMENT TRACKING
| read_file() J | I I
< >
hiq_create_handle() | | | ’l
ﬁnit_timeout_checking() | | >| I
<
i e R promrmemnnee fromrmmnnee 1
1
i Iiiq_read() ! I I PI
' . .
I |_>fllter_h|p() read_rules() | | | |
1
: —
' match_hit) |
I . . » I I
; I filter_state() | | >| |
E <
:
‘
'
‘
]
:

Figure 6.4: Overall functional sequence of the system. The figure presents a
slightly simplified example of the firewall call sequence.

rules for the particular hook through which the packet came in. The filtering
function traverses the list of rules and looks for a rule matching the properties
of the packet. Matching is done by calling the filtering functions or connection
tracking as necessary. When a matching rule is found, the function returns
the target of the rule to caller. If none of the firewall rules match the packet
and no default target is defined, accepting verdict is returned as a default
response.

For each rule, the filtering function analyzes each option that has been de-
fined. Filtering function calls the specific packet filtering functions for each
of the options. These filtering functions and the filter_state function of
connection tracking analyze the packet properties in relation to the option
passed as an argument and return boolean value indicating whether packet

LIB_IPQ

CHAPTER 6. IMPLEMENTATION 33

matches the option.

6.7 Summary

This chapter described implementation of each of the firewall components.
Further details were also presented about selected issues. These included
for example the readers and writers -synchronization mechanism selected
for the firewall policy management interface and the connection tracking
functionalities. The overall functionality was also illustrated to provide a
general view of interactions between the firewall components.

Chapter 7

Analysis

This chapter first evaluates the firewall implementation against the require-
ments specified in Chapter 4. The focus here is on the functionalities that
have further implications or that require additional consideration. Also the
testing environment is presented.

Second point of view for analysis includes the more general implications of
HIP to firewalls. Many such issues were already discussed in Chapter 3 and
laid a groundwork for implementing the HIP enabled firewall. Therefore this
chapter focuses on implementation related observations and issues that have
affected the implementation.

7.1 Evaluation Against Requirements

This section addresses the requirements introduced in Chapter 4. Ongoing
development of protocol poses some restrictions on features of the firewall and
to what extent some functionalities could have been implemented. As men-
tioned in requirements, the implementation limits to features implemented
by the HIPL [1]. At the time of implementation the HIPL supported HIP
base draft version 01 and HIP mobility and multihoming draft version 00,
with some limitations.

7.1.1 Test and Development Setting
The main test method used for verifying the implementation against require-

ments was system level testing of the firewall solution. Test functions have
also been implemented for rule management functions. For the actual firewall

54

CHAPTER 7. ANALYSIS 39

functionalities functional system level testing was, however, considered the
best option. Especially state keeping involves analyzing sequence of packets
which all have side effects to data maintained by the firewall. Therefore, the
system was tested with actual HIP traffic traversing through the firewall. As
the firewall is a prototype implementation, also reasonable amount of debug
information is printed out. The debug information describes the analysis
that leads to packet being accepted or dropped. This enables monitoring
actions and the internal state data of the firewall.

The testing environment uses VMware Workstation virtual machines. This
allows simulating a network of several hosts in one physical host machine.
The test setting is depicted in Figure 7.1.

The main testing and development setting includes two virtual networks
connected by a virtual host (FW) acting as the firewall. The firewall host is
running a Linux kernel with the HIPL user space HIP implementation which
also includes the HIP enabled firewall program. The virtual HIP hosts (host
1, host 2 and host 3) contain Linux kernels with the HIPL kernel version.
The firewall implementation was tested by creating HIP associations through
the firewall host, between the HIP hosts. This setting was necessary, as
the HIP enabled firewall is based on the HIPL user space implementation,
which at the time of implementing was being developed. Therefore the kernel
implementation of HIPL was used for establishing the HIP associations.

host /-\
1)
. EW virtual
virtual | work 2
network
—~ o
th2
€ host L~
3 ethl

HIP association
Network access

Network access (interface down)

Figure 7.1: Test setting with virtual machines and -networks.

The HIP hosts (host 1, host 2 and host 8) had multiple network interfaces and
could be connected to both networks, as illustrated with host 3 of the Figure

CHAPTER 7. ANALYSIS 96

7.1. As a consequence, the setting could be used to simulate mobility situa-
tion, where a mobile host with ongoing HIP connection enters into a network
protected by the firewall. In the Figure 7.1, this could be accomplished by
first creating a HIP association from host 3 through network interface eth2
to either of the hosts in network 1. After that the interface eth2 would be
brought down and a new interface, eth1, would be brought up in network 2.
This sequence was used to test state establishing for a mobile host and is
further discussed in section 7.1.5.

7.1.2 Overall Functionality and Interfacing to the Com-
munication System

The firewall implementation interfaces to the communication system through
the Netfilter framework, as mentioned earlier. This also requires management
through the Netfilter user interface, the Iptables. The Iptables rules must
define that the HIP and ESP packets must be queued for user space handling.

Besides requiring user input through two different interfaces, there could, in
principle, be complications in a system if several different firewall solutions
need to be used. In a production level system this type of solution could be
too cumbersome. Instead, all firewall functions are ideally integrated in a
single system. For a proof of concept level implementation this solution is,
however, adequate.

7.1.3 Firewall Policy Management

The external interface provided for managing the firewall policy is largely
as defined in the requirements. The same format of rules is provided by
the firewall as presented in Figures 4.1 - 4.3. The firewall rules and their
options also map quite directly to the different features provided by the
firewall. The syntactical and semantic analysis was tested with a set of
different configuration files that were parsed by the firewall.

Besides checking the syntactic and semantic issues with the rules, the rule
management provides functions for managing the rule lists in the firewall.
This was necessary for providing interface for managing firewall also at run-
time. Test functions were implemented for rule management functions.

CHAPTER 7. ANALYSIS o7

7.1.4 Stateless Packet Filtering

The stateless packet filtering options require quite straight forward func-
tionalities. The implemented functionalities follow those defined in the re-
quirements. These filtering options are applied to the HIP packets and, as
possible, also to the ESP packets.

For ESP packets, the input and output interface options are, of course, valid
as well as the state option, while the HIP packet type option is not applicable.
The source and destination HITs can not be directly derived from the packet
but can be analyzed in the context of the state option filtering. Therefore the
HITs are analyzed from the state information maintained for the connection.
Applying these options also to ESP packets makes the firewall solution in
some ways more flexible and adaptable.

7.1.5 Connection Tracking

The connection tracking functionality satisfies the general requirements placed
on it. The HIP packets of an association are recognized and analyzed and
necessary information is derived for filtering the related data traffic. Changes
in data traffic flow identifier are also detected from traffic. When required
by the firewall rules, the responder HI is extracted from the base exchange
packets and used for authenticating rest of the control packets.

In practice, the connection tracking features were tested with the test setting
described earlier. HIP associations were created through the firewall to an-
alyze base exchange handling. The processing of mobility and multihoming
signaling was verified by adding and removing addresses of a host during an
ongoing HIP connection. For creating update exchanges where also rekeying
was performed, new interface was brought up in an established HIP asso-
ciation. Different sets of firewall rules were also used to test for example
removing the established connections due to blocked HIP and ESP packets.

Mobility

Due to mobility, an already established HIP connection may need to traverse
through a new firewall. In practice, this can occur when a host with ongoing
HIP connection moves into a network protected by a firewall. In this scenario
the firewall is not aware of the connection, but the mobility signaling may
provide enough information for establishing state for the connection.

Implementing state establishment through mobility signaling was somewhat

CHAPTER 7. ANALYSIS 58

problematic due to ongoing development of the HIP implementation. The
SPI parameter sending was under development and therefore state establish-
ment requiring the SPI parameter could not be implemented. In practice,
this refers to a situation, where a new address is added to an existing net-
work interface of the host. However, in the case where a new interface in the
new network is used for communication, the state could be established. Here
the corresponding host SPI is received from the NES parameter. In practice
this was tested with the setting described in section 7.1.1. Even though also
the first scenario would be useful feature in the firewall, this functionality
demonstrates how HIP protocol information enables establishing state even
for ongoing connection.

An additional consideration here is that when state is not established from
the actual base exchange, the responder HI is not available for the firewall.
This limits the security that a firewall is able to provide for these mobile
connections. Therefore an explicit option “ accept mobile” exists for al-
lowing this functionality with connection tracking. Due to this, a firewall
rule with state option is not allowed to have both —verify responder and
—accept,_mobile sub options defined.

Connection Closing

At the time of implementing, connection closing mechanism was still under
development in the HIPL.. Missing the close packet sequence, however, further
emphasized the need for a connection timeout mechanism. The ongoing
connections reserve memory of a firewall and the firewall with its resources

Also, it is possible that the firewall is not able to intercept the proper closing
sequence of a connection. This may happen for instance if one or both
hosts become unavailable. Mobility or multihoming may also cause situations
where the firewall is no longer able to intercept packets of the connection.
In this case as packets no longer traverse the firewall, the connection is left
open in the firewall and the data it reserves continues to be stored in the
firewall memory.

Due to these issues, it may be practical for a firewall manager to be able to set
some timeout value after which unused connections are removed. Connection
timeouts in transparent middleboxes are however controversial issue. From
protocol point of view this does not follow the transparency rule discussed in
Chapter 2. This may cause situations where packets of a legitimate connec-
tion are blocked. In the case of mobility and multihoming this may happen

CHAPTER 7. ANALYSIS 59

even if the timeout value is set to exceed the general Unused Association
Lifetime value mentioned in the HIP draft [22].

In practice, the suitable timeout value needs to be balanced between the
needs of the organization and the requirement for flexibility. The timeout
checking may also be disabled, for cases where idle time of the connection is
not wished to be limited. Also, this is one of the issues where the registration
requiring firewall with its soft state approach, would be very beneficial.

7.1.6 Non-Functional Requirements

The identified non-functional requirements focused on properties of the de-
sign and implementation, such as modularity and maintainability. The gen-
eral suitability of the design could be evaluated during the implementation.
The division of functionalities into modules seemed practical and no major
changes were needed. Also the planned interaction between the components
was followed in implementation. Only exception to this was the stateless
HIT filtering options applied to the ESP packets, as this needed to be per-
formed in the connection tracking module. This functionality was discussed
in section 7.1.4.

As mentioned in requirements, the main challenge for a HIP enabled firewall
implementation is the ongoing development of the HIP specification and the
implementations. This requires also updating the firewall implementation.
The firewall implementation uses data structures and functionalities from
the HIPL. Therefore the firewall will also benefit from further development
of this HIP implementation. Besides this, the firewall is likely to require
updating of its internal functionalities, as the protocol evolves. The firewall
implementation may also be developed further. The main foreseeable addi-
tion would be the registration capability. How the current implementation
could be extended to support registration is further discussed in section 8.1.

7.2 General Analysis of HIP Enabled Firewalling

General interactions between firewalls and HIP protocol were already an-
alyzed in Chapter 3. This section discusses some issues and implications
of HIP that affect especially a firewall implementation. These issues focus
especially on how HIP as a protocol influences firewall design and implemen-
tation.

CHAPTER 7. ANALYSIS 60

7.2.1 Role of HIP Enabled Firewall

As HIP introduces security features for end-to-end communication, this also
calls for re-evaluation of the role of firewalls. Firewalls have traditionally
attempted to provide authentication and for instance encryption has been
often provided by VPN solutions. In the context of HIP these are, how-
ever, integral part of the end-to-end communication. Therefore the role of
a HIP enabled firewall would include mostly managing the access control
information and making the decisions based on this information. Here some
responsibility of the security, such as end-to-end encryption of data traffic,
is shifted to the end-hosts.

Furthermore, with its authentication mechanisms HIP enabled firewall serves
better as a centralized security perimeter of an organization than as a per-
sonal firewall protecting a single host. Even though HIP is in many ways
transparent to middleboxes, the end-hosts have still more efficient means in
authenticating the traffic. By analyzing the HMAC parameter, a HIP host is
able to first ensure the message validity, with less use of CPU power. There-
fore, having a HIP enabled firewall program in an end-host first analyze the
packet signature, would undermine the benefits of HMAC inspection. Never-
theless, a HIP enabled firewall would also here be a natural place to maintain
access control lists and enforce them.

7.2.2 Registration Requiring Firewall

The firewall solution of this thesis implements a transparent HIP enabled
firewall. In the case of a registration requiring firewall the initiating host
communicates directly with the firewall. As a result, the transparent firewall
acts as the first stage of HIP enabled firewalling for HIP end-hosts that do
not yet include the registration capability.

The transparent HIP firewall can be also more easily deployed, as it does
not necessarily require changes in the host protocol stack. The firewall host
does not necessarily need to be a HIP host. Here the firewall implementation
is built on top of the HIPL user space implementation to avoid copying the
HIP code unnecessarily to the firewall implementation. However, a trans-
parent. HIP enabled firewall is not dependent of HIP implementation, even
though some parts of a HIP implementation may be useful in the firewall
implementation.

Even though transparent firewall has the advantage of supporting the hosts
that lack the registration capability, the registration provides significant ben-

CHAPTER 7. ANALYSIS 61

efits to the firewall. As pointed out before, especially the soft state function-
ality makes the firewall function in a more flexible manner. State is automat-
ically deleted if it is not updated for a certain period of time and the state is
re-established without re-establishing the connection. This is also beneficial
in managing resources used by the firewall, as unused resources can be more
easily freed.

7.2.3 HIP Protocol Implications to Firewall Design and
Implementation

The HIP HIs provide much needed true identifier for end-hosts. As many
other systems operating within the Internet architecture, also firewalls suffer
from the semantic overloading of IP address. Therefore, mobility, multi-
homing and unreliability of the IP address as an identifier are straining also
viability of firewalls. HIP HI provides invariable identifier that is not affected
by changes of location or the particular network interface used. Due to the
introduction of HI, HIP communication can also be associated to a correct
connection, even when there may be third parties involved in delivering it.
By contrast, for example use of Mobile IP is problematic for stateful firewalls
particularly because third parties are involved and the association in firewall
is still identified with the TP addresses in the packets [20)].

The cryptographic properties make Hls essentially different identifiers from
IP addresses. 1P addresses are rather unreliable as end-point identifiers. To
address this issue, firewalls currently try to analyze intricate protocol data
to obtain further assurance that the sending host is in fact the one that IP
address indicates. As pointed out earlier, this analysis only ensures that
the sending host is as aware of the connection state as the firewall itself.
It may not, however, ensure that the sender is in fact the other end-point
of the connection. Instead, HIP traffic is reliably authenticated with less
complicated mechanisms.

In both above mentioned aspects the traditional firewalls would need to con-
tain detailed information about the protocol in order to be able to filter
traffic. Furthermore, different application level protocols operate in very dif-
ferent manners and create different sets of transport level connections in the
process. This leads to overly complicated designs of stateful firewalls, which
are then prone to errors and costly to develop and maintain. This issue
has been generally recognized. One proposed solution is signaling between
the middleboxes and the end-hosts, which is currently investigated by the
Midcom working group of IETF [2].

CHAPTER 7. ANALYSIS 62

Explicit signaling is also possible with HIP as discussed in the context of
registration requiring firewalls. Yet, HIP as such already simplifies firewall
functionality. The approach in design and implementation here has been to
limit protocol logic to what is necessary for obtaining data packet flow iden-
tifiers and HI for authentication. That, in fact, is the essential information
conveyed in HIP.

7.3 Summary

This chapter first analyzed the implemented HIP enabled firewall solution
in relation to the requirements specified in Chapter 4. The implementation
satisfies the requirements defined for it. However, some firewall functional-
ities could still be further developed as the HIP protocol implementation is
still progressing. The chapter also presented the testing methods used for
verifying the functionalities.

Implications of HIP to firewall design and implementation were also analyzed
in a more general level. To summarize, the security properties and visible
signaling information of HIP support and simplify stateful firewall design
and implementation. Still, use of the HIP registration protocol could further
improve the HIP enabled firewall functionalities and provide more flexibility
and robustness.

Chapter 8

Conclusions

Both firewalls and HIP are strongly security oriented technologies. Their fo-
cuses are, however, somewhat different. Firewalls analyze intercepted traffic
to provide centralized security perimeter for a set of hosts. HIP, on the other
hand, secures communication between two communicating end-hosts. This
thesis analyzed how these two technologies should coexist and what benefits
or challenges this may raise.

HIP takes middleboxes, such as firewalls, well into consideration. HIP HIs
and the HITs derived from them provide a useful identifier also for access
control information. HIP is also transparent to middleboxes as necessary
information in protocol packets is left unencrypted. Traffic belonging to a
HIP association can be recognized by a stateful firewall even when host is
mobile or uses multiple network interfaces.

Possibly the most significant benefit are the security features that HIP pro-
vides to firewalls. By verifying the signatures in protocol packets, the fire-
wall is able to reliably authenticate the sender host. In effect, the security is
deeply embedded into the communication instead of being an add-on to the
technology.

Different aspects of HIP may have effects on firewall functions. One of the
most direct would be the registration protocol defined in HIP. Especially the
soft state approach benefits stateful firewalls and enables more flexible and
robust firewall functionalities.

For the HIP enabled firewall, two main design alternatives were considered.
The implementation could have extended an existing firewall system, the
Linux Netfilter, or it could be implemented as a separate HIP firewall system.
The latter alternative was selected for the firewall solution. However, well-

63

CHAPTER 8. CONCLUSIONS 64

founded design choices were also adopted from the Netfilter framework.

The implemented firewall solution demonstrates the feasibility of HIP en-
abled firewall technology. It provides transparent HIP firewalling and satis-
fies the requirements set to it. In general, the firewall implementation follows
the extent to which the reference HIP implementation was implemented. The
firewall includes both stateful and stateless packet filtering functionalities. As
required, the firewall is able to authenticate traffic using the HIs of connection
end-points.

To conclude, HIP enabled firewalls can provide significant benefits compared
to traditional firewall functionalities. These include added security and more
flexible handling of traffic, even in the case of multihoming and mobility.
Accordingly, HIP enabled firewalling could be one of the factors that further
aid the deployment of this emerging technology.

8.1 Future Work

This section outlines possible directions for further development of the HIP
enabled firewall prototype. These include both development of additional
functionalities as well as further improvement and analysis of the currently
implemented features.

8.1.1 Supporting Updated HIP Specifications

The obvious line of further development is to extend the firewall to cover the
aspects of HIP protocol that are currently missing. This can continue along
with developing the protocol implementation, which has progressed during
the firewall implementation.

Two features already mentioned were handling the close packets, which is
currently already included in the protocol implementation, and the SPI pa-
rameter sending. The latter could be used to enable creating firewall state
in the mobility situation described in analysis.

Another change concerns the parameters delivered in update packets. The
REA and NES parameters have been changed into LOCATOR and ESP _INFO
parameters. The update information is, however, transmitted in similar man-
ner as before.

CHAPTER 8. CONCLUSIONS 65

8.1.2 Extending Firewall to Include Registration

Currently the firewall implementation is transparent to the end-hosts. It
could be also extended to include the registration capability, which would
provide additional security to the firewall itself. This way state would not be
established before authenticating the initiating end-host. This section out-
lines the necessary interactions between the firewall program and the HIP
protocol implementation for implementing registration in the firewall solu-
tion. The registration capability was discussed in Section 3.1.2.

In this case, the registration protocol functionality would first need to be
adopted into the HIPL protocol implementation. Here it is assumed that
the actual registration protocol communication would be best performed by
the protocol implementation. This would be reasonable as the registration
protocol reuses HIP functionalities.

The firewall registration functionality would then require interaction between
the firewall system and the HIP protocol implementation. This is straightfor-
ward as the firewall is built alongside the user space version of HIPL, which
makes passing data back and forth simpler. Accordingly, there needs to be
an interface to the actual service, here providing firewall traversal, that the
protocol implementation can use. It is possible that this interface definition
could accommodate multiple different services.

According to current definitions, the registration may be initialized either
directly with the firewall or then firewall may intercept the I1 packet. In
the first case, the HIP protocol implementation comes to contact with the
packet and must consult the firewall service. The firewall must make access
control decision based on the properties of the packet and the HIP protocol
implementation can then proceed to accept or deny request.

In the second case, the firewall intercepts HIP packets intended for other
hosts. The HIP implementation must therefore provide information of estab-
lished and expired registration associations for filtering these packets. The
firewall may then trigger the registration R1 packet sending in the HIP im-
plementation if a HIP packet with missing registration is encountered. The
firewall can also use the registration status information to remove connections
from memory as the registrations expire.

8.1.3 Production Level Firewall Solution

In situation where HIP is more extensively deployed and used more widely,
the firewall solution also needs to be more advanced. This would require

CHAPTER 8. CONCLUSIONS 66

further development and more extensive quality assurance.

A production quality firewall needs to be extensively verified for all possible
error conditions that a malicious host may cause in the firewall. One required
aspect is therefore more exhaustive testing to further ensure the quality of the
solution. The analysis would need to include testing with different distorted
HIP packets, which could cause problems in HIP packet handling. Testing
should also include different cases of abnormal behavior from end-hosts, such
as sending packet sequences different from specifications.

Another aspect would be a more extensive study of the efficiency of the
firewall and requirements posed by that. As HIP enabled firewall includes
potentially CPU intensive operations, such as the signature verification, there
should be analysis concerning the resource consumption of the firewall. This
should produce estimates of necessary amounts of system resources, including
CPU power and memory, for different scenarios and load conditions. Also,
this should not limit to normal operation with well-behaved hosts. The
analysis should also include estimates on the effects that malicious hosts or
attacks of different magnitude can cause on the firewall performance.

Bibliography

1]

2]
13l
4]

[5]

(6]

7]

8]

9]

[10]

[11]

HIPL: HIP for Linux. Helsinki Institute for Information Technology,
http://infrahip.hiit.fi /hipl /about.html.

Middlebox Communication (midcom) working group, IETF.
The Netfilter /Iptables project. http://www.netfilter.org/.
ANDREASSON, O. Iptables Tutorial 1.1.19, 2001.

AURA, T., NAGARAJAN, A., AND GURTOV, A. Analysis of the HIP
Base Exchange Protocol. In ACISP’05 (July 2005).

BeELLOVIN, S., AND CHESWICK, W. Network firewalls. Communica-
tions Magazine, IEEE 32, 9 (September 1994), 50 57.

CanDOLIN, C., Komu, M., KousAa, M., AND LUNDBERG, J. An

Implementation of HIP for Linux. In Proc. of the Linux Symposium
(July 2003).

CARPENTER, B. Internet Transparency. Fequest for Comments 2775,
IETF, February 2002.

CARPENTER, B., AND BriMm, S. Middleboxes: Taxonomy and Issues.
Request for Comments 3234, IETF, February 2002.

CHESWICK, W. R., BELLOVIN, S. M., AND RUBIN, A. D. Firewalls
and Internet Security: Repelling the Wily Hacker, second ed. Addison-
Wesley Professional Computing Series. Addison-Wesley, 2003.

Courrois, P. J., HEymANs, F., AND PARNAS, D. .. Concurrent
control with "readers" and "writers". CACM 1/, 10 (October 1971),
667 — 668.

67

BIBLIOGRAPHY 68

[12]

[13]

[14]

[15]

|16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

Ervrison, C. M., FranTZ, B., LAMPSON, B., R1veEsT, R., THOMAS,
B., AND YLONEN, T. SPKI Certificate Theory. Request for Comments
2693, IETF, September 1999.

FrREED, N. Behavior of and Requirements for Internet Firewalls. Re-
quest for Comments 2979, ITETF, October 2000.

HENDERSON, T. R., AHRENHOLZ, J. M., AND KiMm, J. H. Experience
with the Host Identity Protocol for Secure Host Mobility and Multihom-
ing. In WCNC 2003 - IEEE Wireless Communications and Networking
Conference (March 2003), vol. 4, pp. 2120 — 2125.

HERscoviTz, E. Secure virtual private networks: the future of data

communications. International Journal of Network Management 9, 4
(1999), 213-220.

JOKELA, P., MOSKOWITZ, R., AND NIKANDER, P. Using ESP trans-
port format with HIP. Internet-Draft, IETF, February 2005.

KENT, S., AND ATKINSON, R. IP Encapsulating Security Payload
(ESP). Request for Comments 2406, IETF, November 1998.

LAGANIER, J., AND EGGERT, L. Host Identity Protocol (HIP) Ren-
dezvous Extension. Internet-Draft, IETF, February 2005.

LLAGANIER, J., KOPONEN, T., AND EGGERT, L.. Host Identity Protocol
(HIP) Registration Extension. Internet-Draft, IETF, February 2005.

LE, F., Faccin, S., PATiL, B., AND TSCHOFENIG, H. Mobile IPv6
and Firewalls Problem statement. Internet-Draft, IETF, August 2004.

MoskowiTz, R., AND NIKANDER, P. Host Identity Protocol Archi-
tecture. Internet-Draft, IETF, December 2004.

MoskOwITZ, R., NIKANDER, P., (EDITOR), P. J., AND HENDERSON,
T. Host Identity Protocol. Internet-Draft, IETF, October 2005.

NIKANDER, P. HIPpy Road Warriors Jumping Hoods over Road Blocks.
IRTF Host Identity Protocol (HIP) Research Group, Workshop on HIP
and Related Architectures, Washington DC, November 2004.

NIKANDER, P., ARKKO, J., AND HENDERSON, T. End-Host Mobility
and Multi-Homing with Host Identity Protocol. Internet-Draft, IETF,
February 2005.

BIBLIOGRAPHY 69

[25]

[26]

[27]

28

[29]

[30]

[31]

[32]

[33]

[34]

[35]

NIKANDER, P., YLITALO, J., AND WALL, J. Integrating Security, Mo-
bility, and Multi-Homing in a HIP Way. In Proceedings of Network and
Distributed Systems Security Symposium (NDSS’03) (February 2003),
Internet Society, pp. 87-99.

POHLMANN, N., AND CROTHERS, T. Firewall Architecture for the
Enterprise. Wiley Publishing, Inc, 2002.

RusseLL, R., AND WELTE, H. Linux netfilter Hacking HOWTO, 2002.

SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end argu-

ments in system design. In ACM Transactions on Computer Systems
(TOCS) (November 1984), ACM, pp. 277 288. ISSN:0734-2071.

SCHNEIER, B. Applied Cryptography, Second Edition. John Wiley &
Sons,Inc., 1996.

STIEMERLING, M., QUITTEK, J., AND EGGERT, [.. Middlebox Traver-
sal of HIP Communicationg. TRTF Host Identity Protocol (HIP) Re-
search Group, Workshop on HIP and Related Architectures, Washington
DC, November 2004.

STIEMERLING, M., QUITTEK, J., AND EGGERT, L.. Middlebox Traver-
sal Issues of Host Identity Protocol (HIP). Internet-Draft, IETF, Febru-
ary 2005.

TSCHOFENIG, H., NAGARAJA, A., SHANMUGAM, M., YLITALO, J.,
AND GURTOV, A. Traversing Middleboxes with Host Identity Protocol.
ACISP’05, July 2005.

TSCHOFENIG, H., NAGARAJA, A., AND TORVINEN, V. HIP Middlebox
Traversal. IRTF Host Identity Protocol (HIP) Research Group, Work-
shop on HIP and Related Architectures, Washington DC, November
2004.

TSCHOFENIG, H., NAGARAJAN, A., TORVINEN, V., YLITALO, J., AND
GRIMMINGER, J. NAT and Firewall Traversal for HIP. Internet-Draft,
IETF, February 2005.

TscHOFENIG, H., TORVINEN, V., AND ERONEN, P. Advanced HIP-
based Firewall Traversal. IRTF Host Identity Protocol (HIP) Research
Group, Workshop on HIP and Related Architectures, Washington DC,
November 2004.

BIBLIOGRAPHY 70

[36] vAN Roo1s, G. Real Stateful TCP Packet Filtering in Ipfilter. 2nd In-
ternational SANE Conference, Maastricht, The Netherlands, May 2000.

