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The Host Identity protocol (HIPv1) is a flexible protocol that solves a number of
security, mobility and other problems in the current Internet. In this thesis, we
present our work on HIP version two (HIPv2) and HIP version 2.5 (HIPv2.5) in
the HIP for Linux (HIPL) project.

For HIPv2, we analyze the transition from v1 to v2 in the specifications and
present design of a dual-version HIPL to facilitate this transition. We also show
an implementation and validation of the new cryptographic agility framework as
required by HIPv2.

As we expect HIPv2 to have the same deployment obstacles as HIPv1, we take
a step forward and propose HIPv2.5. Contrary to HIPv2, HIPv2.5 does not
change current HIP message definitions and handling processes, but provides a
library-based solution to facilitate the adoption of HIP. We design and implement
a prototype of a library-based HIPL, which shifts HIP from below the transport
layer to above it while retaining the security and mobility features of HIP. The
library provides new API closely modeled after the sockets API for easier adop-
tion for network application developers, which has earlier been an issue for HIP
adoption. We demonstrate the function of the library using an example test
application.
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and professor Peter Sjödin and my instructor Miika Komu. Thanks for all
your guide and help during these six months. Especially, I would like to
express my gratitude to Miika, who fills my email box with documents and
papers, patiently listens to each detail technical problem I have met and gives
tons of comments on the thesis. I enjoy those discussions and brain storming
we had and gain a lot of knowledge from them.

I also want to thank members in the HIPL project team, René Hummen,
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Abbreviations and Acronyms

API Application Programming Interface
ARM Advanced RISC Machine
BEX Base Exchange
CID Connection Identifier
DNS Domain Name System
DNSSEC DNS Security Extensions
DoS Denial of Service
DSA Digital Signature Algorithm
DTLS Datagram Transport Layer Security
ESP Encapsulating Security Payload
FTP File Transport Protocol
FQDN Fully Qualified Domain Name
KDF Key Derivation Function
NAT Network Address Translation
HA Host Association
HICCUPS HIP Immediate Carriage and Conveyance of Upper-

layer Protocol Signaling
HIP Host Identity Protocol
HIPL HIP for Linux
HIPv1 HIP version 1
HIPv2 HIP version 2
HIPv2.5 HIP version 2.5
HI Host Identifier
HIT Host Identity Tag
HSOCK HIPL Socket
IANA Internet Assigned Numbers Authority
ICE Interactive Connectivity Establishment
IP Internet Protocol
IPCS Industrial Process Control System
IPsec Internet Protocol Security
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ISP Internet Service Provider
IoC Inverse of Control
MPTCP Multi-Path TCP
MTU Maximum Transmission Unit
NSENT Number of bytes Sent
NRECV Number of bytes Received
OGA ORCHID Generation Algorithm
ORCHID Overlay Routable Cryptographic Hash Identifiers
P2P Peer-to-Peer
POSIX Portable Operating System Interface
RFC Request For Comments
ROCKS Reliable Sockets
RTT Round Trip Time
RVS Rendezvous Server
SCADA Supervisory Control And Data Acquisition
SEQ Sequence
SRTP Secure Real-time Transport Protocol
SSH Secure Shell
STUN Session Traversal Utilities for NAT
SYNC Synchronization
TCP Transmission Control Protocol
TESLA Transparent Extensible Session-Layer Framework
TLS Transport Layer Security
TLV Type, Length and Value format
TURN Traversal Using Relays around NAT
UDP User Datagram Protocol
RTCWEB Real-Time Communication in WEB-browsers
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Chapter 1

Introduction

Within 20 years, the Internet has evolved from a small network of research in-
stitutions to an universal communication carrier, which connects every little
corner of our world. Although the expansion of the Internet was constrained
by the dot-com bubble 10 years ago, the Internet surge is still formidable
because of the rising of the mobile Internet. In the mobile era, Internet
Protocol (IP) faces a great challenge as an IP address serves a dual purpose:
it defines both “who” and “where” the host is. Transport layer and applica-
tion layer utilize IP addresses to identify hosts, while IP layer uses them as
locators. For a static host with a single IP, this coupled binding is mostly
valid. However, the portable nature of mobile clients leads to frequently
changing IP address, which can disrupt upper layer protocols. Unintended
changes on IP addresses break media streams on top of Transmission Control
Protocol (TCP), and can have adverse effects in contacting of hosts and IP
address-base access-control lists. Mobile IP makes an effort to fill this gap by
introducing a surrogate IP address to be used as host identifier, but requires
extra infrastructure.

In addition to mobility concerns, there are three main problems for the
current Internet. First, security protocols in the Internet are challenged by
mobile clients. A number of solutions have emerged to secure communica-
tions for the Internet, such as Transport Layer Security (TLS), Datagram
Transport Layer Security (DTLS), but lack NAT traversal support. Sec-
ond, traversal through NAT middleboxes has become prevalent. Due to the
shortage of IPv4 addresses, many hosts are located behind NAT devices and
employ private IP addresses. Since NAT devices cannot handle incoming
connections without manual pre-configurations, hosting servers behind the
NAT is inconvenient. P2P applications are complicated by NATs drastically
because they have use tricks to penetrate the NAT boxes and the tricks are
not always reliable. Third, the Internet is challenged by IPv6 adoption and
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CHAPTER 1. INTRODUCTION 11

interoperability. The slow progress of IPv6 deployment indicates that IPv4
and IPv6 will coexist for a long term. In order to function properly, applica-
tions should support both protocols but the migration involves a lot of effort
and costs.

The Host Identity Protocol (HIP) offers a more complete solution for the
four problems within a single protocol for legacy applications. HIP intro-
duces unique identifiers for each host. Instead of relying on IP addresses,
Applications can use HIP-based identifiers for persistent naming. At the
same time, the identifiers are cryptographically protected and can be used
for secure authentication. HIP includes a key exchange procedure called the
Base Exchange (BEX) to minimize the cryptographic overhead, during which
the hosts negotiate symmetric keys to protect the data of the applications.

While HIP supports multiple features within a single protocol, the process
of adopting a new protocol is never easy because it is not only determined
by the technical aspects of the protocol, but also governed by deployment
costs and integration aspects. In the past, HIP has required changes into
the Linux kernel in Internet Protocol Security (IPsec) processing, while this
has been successfully adopted into the Linux networking stack, Application
Programming Interfaces (APIs) supporting HIP have not been adopted yet,
the APIs require again kernel changes, thus requiring another deployment
hurdle. However, the API for HIP-aware applications is already needed now
to facilitate HIP adoption and the situation appears as a “chicken-and-egg”
problem.

In this thesis, we examine the design and implementation of HIPv2 and
HIP version 2.5 (HIPv2.5) in the HIP for Linux (HIPL) project. HIPv2 brings
an agile framework to adopt new cryptographic algorithms and stronger ci-
phers. To ease the protocol upgrade transition, we design a dual-version
HIPL. Meanwhile, our proposed HIPv2.5 aims to extend HIP into a stand-
alone user-space library in contrast to normal daemon-based solutions. The
library-based implementation can be integrated into an application when it
requires mobility and needs to be aware of the secure identifiers of HIP, e.g.,
for access control purposes.

1.1 Problem Statement

This thesis aims to address 2 two research problems:

1. HIPv2: the new version of the protocol raises some transition concerns.
The standardization process for the HIP version 2 also demands feed-
back from implementators. In the HIPL project, we explore a seamless
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transition solution and examine gaps between HIPv2 draft and im-
plementation. We believe that this is not only beneficial for v1-v2
transition but also if there is a need for HIPv3 at some point.

2. HIPv2.5: considering that HIP has not been deployed widely, in an
unpublished paper, the authors have interviewed 19 experts to exam-
ine the deployment challenge of HIP [48]. They suggested that a HIP
implementation as an application-layer middleware provides better de-
ployability then common network-layer solutions. Based on the result,
we propose to build HIP as a standard-alone library to extend the cov-
erage of HIP, which features easier integration and experimentation.

1.2 Structure of the Thesis

The thesis consists of eight chapters. The second chapter is a background
study, where we review the concept of HIP, its extensions, and the related
projects. In the third chapter, we focus on the design of HIP version 2
and 2.5. This includes dual-version support (version 1 and version 2), agile
cryptographic framework, library-based HIP approach and mobility solution.
Chapter four and five details the implementation and shows experimentation
results to validate the design. Chapter six presents name-based sockets and
compares different mobility solutions with our library-based approach as re-
lated work. Finally chapter seven discusses further work and chapter eight
concludes the thesis.



Chapter 2

Background

2.1 Host Identity Protocol (HIP)

The Internet nowadays has two major global namespaces, IP address and
Domain Name System (DNS). The IP address was originally intended for
routing packets to certain locations, but then was reused for host identifi-
cation. This coupled role makes IP address based host identification more
difficult in mobile Internet, because IP address based mobile hosts cannot be
identified persistently as their IP addresses are prone to change. IP address
also lacks any security protection and does not offer any protection against
IP spoofing.

HIP [40] is a protocol to address these gaps in the Internet architecture.
With the help of HIP, the role of an IP address returns to its origins as a
routing and location tag while another new identifier is introduced by HIP to
identify hosts globally. The new identifier is also cryptographically protected
thus difficult to forge.

HIP is composed of both a control plane and a data plane: the control
plane is responsible for establishing a security association between end hosts
and generating shared key; the data plane uses the shared key from the
control plane for keying materials to protect the application traffic.

2.1.1 Host Identifier (HI)

HIP introduces a new Host Identity namespace [30] for the Internet. Each
entity in this namespace is identified with a Host Identifier (HI). In HIP,
the Host Identity and Host Identifier are two different concepts. The former
is an abstract term and the latter is the realization of the abstract concept.
The HIP architecture specification defines the Host Identifier as “a public
key used as a name for a Host Identity” [30].

13



CHAPTER 2. BACKGROUND 14

Figure 2.1 illustrates the binding between a HI and its corresponding
locators. The binding can be also one-to-many for mobility and multihoming.
The HI is the public key part of an asymmetric key-pair of an end host. A HI
is statistically unique. The HI also facilitates mutual authentication between
two hosts. HIP uses it and the corresponding private key to protect the
control and data plane between two hosts.

Figure 2.1: The Current Internet Binding Model (left) and the HIP Binding
Model [31]

A HI is independent of IP addresses. Combined with its global (statisti-
cal) uniqueness, it can be used to identify hosts even in overlapping private
address realms. Thus HIP has the potential to revive the end-to-end com-
munication model for the Internet.

Different asymmetric key algorithms have their own presentation formats
for a public key and HIP reuses to the DNS Security Extensions (DNSSEC)
[38] specification for public-key encoding. The definition of the encoding
for RSA keys is specified in RFC-3110 [1] and in RFC-2536 [13] for Digital
Signature Algorithm (DSA) key encoding.

2.1.2 Host Identity Tag (HIT)

Embedding a complete HI in each HIP message is inefficient for two reasons:
first, the length of the result after encoding it is relatively large, subjecting
the control plane for fragmentation issues; second, the length of the result is
arbitrary, which makes the format of the protocol more complicated.

For space-efficiency reasons, HIP introduces Host Identity Tag (HIT) for
message exchange. A HIT is a fixed length (128-bit, the same as IPv6 ad-
dress) tag. It is a secure hash result of an encoded HI. Reversing a hash
is computationally difficult, and therefore the HIT can be considered as a
secure identifier.
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2.1.3 HIP Message Format

A HIP message contains a HIP header and its body. The header is 40-byte
long and the length of the body is defined in the header. Figure 2.2 presents
the structure of a HIP message with the following fields:

• Next Header: the HIP header conforms to the definition of a header in
IPv6 that starts with a 1-byte next header field.

• Header Length: this field defines the length of the body for this HIP
message.

• Packet Type: this field determines the type of the current HIP message.
For instance, the HIP BEX (described in Section 2.1.4) consists of four
different type of messages: I1, R1, I2 and R2. In addition to them, HIP
also has other types of message such as the UPDATE message and the
NOTIFICATION message.

• Version & Reserved: the HIP version number can be inferred from this
field. In addition to the version number, several bits are reserved for
future extensions.

• Checksum: the Checksum is calculated based on the HIP control mes-
sage and pseudo IP header as defined in the IPv6 specification [11].

• Controls: the controls field consists of bit flags to handle special situa-
tions for different message types.

• Sender HIT and Receiver HIT: the HIT of the sender and the HIT of
the receiver.

A HIP message body is composed of several HIP parameters, and each
parameter is presented in Type, Length and Value format (TLV). This way,
each HIP parameter is self-contained and new parameter can be added eas-
ily without changing the parameter processing. This feature makes HIP a
flexible protocol to handle optional extensions defined by new parameters.

2.1.4 HIP Base Exchange (BEX)

The process of establishing HIP security association (or HIP association) is
called HIP BEX. The BEX consists of four steps and four HIP messages are
involved: I1, R1, I2 and R2. The Figure 2.3 shows a BEX between two hosts,
which are called the initiator and responder. For demonstration purposes,
this figure only includes the most important parameters for the BEX. The
steps are as follows:
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Figure 2.2: HIP Message Format

1. The initiator sends an I1 message, which contains only a HIP header.
This message essentially notifies the responder the start of BEX.

2. The responder sends a R1 message to inform the initiator about its
HI, a computational puzzle for the initiator to solve (PUZZLE), a
Diffie-Hellman public value (DH VALUE) and a signature of the packet
(SIG). The R1 message can be pre-created and sent without any cryp-
tographic processing cost before receiving an I1 message, which allows
the responder to remain stateless at this stage and to prevent the Denial
of Service (DoS) attacks against HIP control plane.

3. After the initiator receives the R1, several steps are required to pro-
cess the message: a) the initiator must check the correctness of the
signature in the R1. b) the initiator prepares its HI, solves the puz-
zle (SOLUTION) which requires a certain level of computation effort,
generates its Diffie-Hellman public value (DH VALUE), calculates a
message authentication code (MAC) and signature (SIG). c) finally,
initiator groups the parameters into an I2 message and sends it to the
responder.

4. Upon receiving the I2 message, the responder must also verify the sig-
nature, MAC and puzzle solution. At this point, the Diffie-Hellman
key exchange is finished and both side generate an identical shared
key. The responder then sends a R2 message which contains MAC and
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signature (SIG) to notify the initiator on the completion of the BEX.

The two hosts use the shared key generated in the BEX as key mate-
rial for the protection of the data plane. The base exchange specification
in RFC-5201 [40] does not explicitly mandate any specific method for the
data plane to support modularity. Implementations can freely choose differ-
ent algorithms and methods. RFC-5202 [32] illustrates a way to establish
Encapsulating Security Payload (ESP) [20] to secure the data plane.

Figure 2.3: HIP Version 1 Base Exchange

2.1.5 HIP Native API

HIP Native API [23, 24] extends Sockets API to support HIP through a new
PF HIP socket family. The API closely follows the design of Sockets API
to maximize reusability. Figure 2.4 illustrates the layering architecture of
the native API. The HIP layer is located between the transport and net-
work layer. At the socket layer, a new HIP API is provided for applications
to access HIP functionality. Each layer uses different namespace identifier,
which is presented in figure 2.5. On the top, the User Interface uses the
Fully Qualified Domain Name (FQDN) for better human readability. The
application layer uses source HIT, destination HIT, source port, destination
port and protocol to identify a connection. This model decouples IP address
which is originally part of the application layer identifier.

The HIP Native API is mainly implemented in the kernel space and it can
be divided into two parts, the HIP module and the HIP socket handler. The
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Figure 2.4: The Layering Model of HIP Native API [23]

HIP module is the implementation of the protocol, which handles mechanisms
such as BEX and update. The HIP socket handler is registered into the
network stack as a handler for the new PF HIP socket family. This way, the
handler becomes a bridge for applications to utilize the functionality provided
by the HIP module in the kernel.

HIP Native API also has a fallback option for applications. If the peer
host of an application does not support HIP, it can switch back to plain
TCP/IP model for compatibility purpose.

Figure 2.5: The HIT centric namespace model [23]
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2.2 HIP Version 2 (HIPv2)

The HIPv1 RFC [40] was published on April 2008. It is based on now obso-
leted cryptographic algorithms that addressed by HIPv2 [41] that introduces
stronger ciphers. It also provides an agile framework for algorithm negoti-
ation. The HIPv2 RFC was still working in progress during the writing of
this thesis.

2.2.1 HIT Generation Mechanism

In the HIPv1, the HIT generation method is based on the generic specifi-
cation of Overlay Routable Cryptographic Hash Identifiers (ORCHID) [9].
It defines a standardized algorithm to generate hash-based identifiers that
are compatible with IPv6 addresses. The proposal also defines an IPv6 pre-
fix (2001:10::/28) obtained from the Internet Assigned Numbers Authority
(IANA). HIPv1 conforms to this specification by applying the ORCHID pre-
fix in HITs and truncates the hash digest of a HI to fill in the remaining 100
bits.

In HIPv2, the HIT generation method has been upgraded to meet the
requirement of “cryptographic agility”. As a result, ORCHID Generation
Algorithm (OGA) is introduced for the generation of a HIT. Figure 2.6
compares the HIT generation mechanisms in HIPv1 and HIPv2:

• A HIT in HIPv1 consists of two parts. The left side consists of the
fixed 28-bit prefix as assigned by IANA. For the right 100 bits, HIPv1
first applies SHA-1 [2] to digest a pre-organized structure of a HI, and
then truncates the result to fit into 100 bits.

• A HIT in HIPv2 consists of three parts. The first part, that is, the 28-
bit prefix is kept unchanged. Then a new 4-bit of OGA field follows,
which is marked with gray color in Figure 2.6. The third part is the
hash result of a HI, which is reduced to 96 bits.

HIPv1 only supports SHA-1 as the hash function for HIT generation.
It is well-known that a security vulnerability on the collision resistance
property of SHA-1 is found by Xiaoyun Wang [49]. Although the vul-
nerability does not affect the ORCHID specification drastically because
the specification relies on the second-preimage resistance property of
the hash function, keeping using an algorithm which is extensively ex-
amined for security vulnerabilities [6] discredits HIP as a secure pro-
tocol. Therefore, HIPv2 decided to add the OGA field for adopting
stronger algorithms. Based on this field, HIPv2 hosts can infer hash
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algorithm being used rather than iterating through all the possible com-
binations to find a match. The algorithms can differ but have to be
supported by both sides.

The generation of the last part of a HIT in HIPv2 is similar to the
generation of the second part in HIPv1, with the only difference that
the hash result is truncated to 96 bits since 4 bits is assigned to the
OGA field.

Figure 2.6: HIT Generation in HIPv1 and HIPv2

2.3 Engineering Efforts on HIP

OpenHIP1 and HIPL2 [36] are two active projects for the implementation of
HIP. OpenHIP is a cross platform solution for Linux, BSD, Mac OS X and
Windows while HIPL focuses specifically on the Linux platform. HIP for
Internet from Ericsson is not active at the moment.

In the industry, TOFINO3 offers HIP-based devices to protect Supervisory
Control And Data Acquisition (SCADA) and Industrial Process Control
System (IPCS). Figure 2.7 demonstrates the product from the company.
Boeing also uses HIP as part of their SCADA solution for assembling air-
planes [35] and the company plans to utilize HIP to develop secure smart
phones4.

1http://www.openhip.org/
2https://launchpad.net/hipl
3http://www.tofinosecurity.com/
4http://www.itnewsafrica.com/2012/04/boeing-to-develop-own-smartphone/
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Figure 2.7: HIP-Based Devices from TOFINO

2.3.1 Daemon-based Approach

Both OpenHIP and HIPL utilize a daemon-based approach for HIP imple-
mentation. The HIP daemon is a process maintains HIs and state of HIP
associations. The daemon is also responsible for translating HITs to locators
and mobility management. An advantage for this approach is that the HIP
control plane and data plane are clearly separated5. Control plane messages
are exchanged between daemon processes, while data plane messages flow
between user applications, possibly secured by a separate security module
such as IPsec.

However, the daemon approach has its own disadvantages: first, the secu-
rity improvements are transparent to applications. The secure authentication
as offered by HIP BEX and data encryption/decryption by IPsec are totally
invisible for applications. Second, it is difficult to achieve HIP-related con-
figuration at application granularity. All the applications have to share the
same configuration for one host. Third, the daemon process normally requires
administrator privilege, which is not always allowed in all environments.

2.3.2 HIPL Modularization Framework

HIP is an extensible protocol. The HIPL implementation also prioritizes
flexibility and extensibility, which has led to a modularization framework for
protocol implementation called Libmod [19]. The Libmod framework aids
the implementation of HIPL in two key areas:

5with the exception of the HIP Immediate Carriage and Conveyance of Upper-layer
Protocol Signaling (HICCUPS) extension
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1. By using the Libmod, HIPL separates protocol core and extensions:
Libmod divides a monolithic protocol implementation into modules
by their functionality and coordinates their communication with the
protocol “core”. Modules on top of the Libmod only rely on APIs of
this library, which decouples source code dependencies internally.

The characteristic of this library meets the implementation requirement
of a flexible protocol design like HIP. Instead of mixing many HIP ex-
tensions together within the protocol core, they can be implemented in
different plug-in modules and introduced to the project through a con-
figuration file. In the HIPL project, extensions such as HIP certificates
[16] are built as Libmod modules.

2. The Libmod maintains a state machine and a function registry service
for a protocol implementation. There are three stages in the Libmod
for function registration: initialization, message handling and protocol
maintenance.

In the initialization stage, modules can initialize the necessary states,
data structures, check the availability of required features, and register
their handlers and so called maintenance functions.

In the message handling stage, the library coordinates the modules
and the protocol core to process a given message. This coordination
is based on the handler function registration. The registration service
allows functions to be bound to certain predefined criterion with a
priority number. When handling a message, the Libmod finds the
criterion matching the current message and executes handler function
chain registered by this criterion one by one ordered by priority. The
criterion consists of the combination of HIP message type and current
HIP association state.

Figure 2.8 illustrates the function registration mechanism. In the fig-
ure, square boxes with solid lines stand for the criteria and the round
boxes are the registered functions. The figure can be interpreted in
two directions: horizontally, with the gray bar including all the criteria
HIPL uses for message handling, such as handling of the I1 message
when no HIP association exists (the first criterion) and handling of
the R1 message when current state is I1-SENT. Vertically, each chain
shows registered functions for a single criterion. In the chain 1, four
handler functions are registered and three in the Chain 2.

The maintenance stage also has a similar handler function registration
mechanism. The difference between this stage and the previous one is
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Figure 2.8: The Libmod Message Handler Registration in HIPL

that the maintenance stage is not driven by incoming messages, but by
time. Maintenance functions are triggered periodically and are suitable
for implementing features requiring to be performed repetitively over
time. For instance, the HIPL project uses the maintenance stage to
send “heartbeat” messages to associated hosts to detect when they are
not reachable anymore.

2.4 HIP NAT Traversal

The NAT traversal in HIPv1 is achieved by an HIP extension [28] which
utilizes mechanisms from the Interactive Connectivity Establishment (ICE)
[17, 39, 43] protocol for path discovery between two hosts. ICE is an UDP-
based NAT solution which uses an offer and answer model and a connectivity
checks mechanism to find the best path.

The HIP NAT traversal extension consists of three elements: first, the
specification defines User Datagram Protocol (UDP) encapsulation formats
for HIP control messages and IPsec ESP packets; second, the specification
extends the HIP Rendezvous Server (RVS) to support NAT. The so called
HIP Relay Server records registration information for each HIP host behind
the NAT and relays their control messages to the host they want to reach;
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third, the specification integrates the ICE offer/answer exchange into the HIP
BEX and defines the interaction with ICE connectivity checks to discover a
working path for the data flow.

The NAT traversal mechanism can be divided into three steps: first, a
host behind the NAT registers its public address on a HIP relay server. A
keep-alive mechanism is applied to guarantee the aliveness of this public
address in the NAT; second, an initiator utilizes the relay server to delegate
the whole HIP BEX (with the ICE offer/answer exchange embedded) to a
responder. If the BEX succeeds, two parties have established a working
path for HIP control messages via the relay server; third, based on the ICE
exchange in the BEX, two parties can try to find a better path for data
packets.

The ICE protocol internally uses Session Traversal Utilities for NAT
(STUN) and Traversal Using Relays around NAT (TURN) for NAT traversal.
For the NAT solution of HIPv1, the ICE, STUN and TURN increases the
amount of effort for the implementation. Therefore, in HIPv2 an improved
specification [21] extends HIP messages and state machines to solve the NAT
problem in a more native way. The new specification reuses HIP messages for
connectivity checks and candidate gathering, which are previously handled
by the ICE protocol.
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Design

For the HIPL project, HIPv2 and HIPv2.5 features are two independent
tasks for different purposes. The former keeps focusing on the daemon-based
solution of HIPL albeit it is entirely reusable for the latter. Based on the
assessment of the current HIPL implementation and the new HIPv2 draft,
we experiment with a dual-version prototype and introduce cryptographic
agility of HIPv2 into the project. This way, we can validate and give valuable
feedback for the HIP standardization process. Contrary to the HIPv2 design
in the project, HIPL Library(HIPv2.5) innovates a library-based prototype
that is not defined in any existing specification. We explore the design of
this library and build its prototype.

3.1 HIP Version 2

This section presents the design of dual-version HIP and cryptographic agility
in the HIPL project.

3.1.1 Dual-version HIP

In order to boost the transition from HIPv1 to HIPv2, we design a dual-
version HIP for the HIPL project. The dual-version HIPL allows hosts to
handle HIPv1 and HIPv2 at the same time. We believe our design might offer
some insight in transitioning to HIPv3 some day if required. This section is
divided into two parts: transition analysis and the dual-version design.

3.1.1.1 Analysis on HIPv1 to HIPv2 Transition

As introduced in section 2.2.1, a HIT in HIPv2 contains a 4-bit OGA to
make the asymmetric key algorithm and hash function of the HIT explicit.

25
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Although a HIT in version one and a HIT in version two have identical
prefix according to the current specification of HIPv2 and ORCHID, they
are incompatible because of the 4-bit OGA field. If a HIPv1 host validates
a HIT of version two, it will incorrectly consider the OGA field as part of
truncated hash result, thus the validation fails1. Similarly, the validation on
a HIT of version one in a HIPv2 host also fails because the host will wrongly
recognize the first 4 bits of hash results as the OGA field. Meanwhile, since
the 4 bits OGA between bits 29 and 32 in version one are actually part of
the hash result and can be considered as random numbers, thus it is clueless
to determine the version of a HIT.

For a HIPv1 or HIPv2 host, this issue has no effect on their operations,
because they are supposed to handle a certain version of HIP and to assume
that HITs to process always align to the corresponding version. However, if
we consider the transition from v1 to v2, this issue becomes significant due
to the ambiguity.

In order to support version transition, a host must provides support in
two aspects related to HITs: firstly, the host must provide at least one HIT
for each version, then other hosts can choose from them based on the HIP
version they support; secondly, the host must be capable to handle HITs from
different versions. We conclude all possible situations for two parties that
are involved in the communication in table 3.1 and find that the ambiguity
of HIT formats in v1 and v2 causes transition problems.

In this table, a V1-only initiator stands for a host that is only capable of
triggering HIPv1 BEX. A V1-only responder is a host that is only capable
of handling HIPv1 messages. Similarly, A V2-only initiator and a V2-only
responder are hosts that only support HIPv2. The dual initiator and dual
responder are for the purpose of transition and able to handle both HIPv1 and
HIPv2. In the table we use asterisks in the cell to mark those problematic
situations. All the situations related to the transition from v1 to v2 are
described as follow:

1. Cell c2, A dual-version initiator and a V2-only responder: the initia-
tor should contact the responder using HIPv2 since the responder is
running HIPv2. However, since the version of the responder cannot
be inferred from the HIT of the responder, the BEX cannot be started
because initiator is unable to determine which version to select for trig-
gering BEX.

2. Cell c1 is similar to Cell c2.

1Strictly speaking, some special hash results can pass the validation, but the probability
of getting them is so small that we can ignore those cases.
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1) V1-only
responder

2) V2-only
responder

3) Dual
responder

a) V1-only
initiator

v1 no v1*

b) V2-only
initiator

no v2 v2*

c) Dual
initiator

v1* v2* v1 or v2*

Table 3.1: HIPv1 and v2 Interoperability Table

3. Cell b3, where a V2-only initiator and a dual-version responder: the
initiator has knowledge of two HITs (both v1 and v2) of the responder.
The initiator can only start a HIPv2 BEX and expect a HIT of version
two as the receiver HIT, but it is impossible for the initiator to choose
the correct HIT from the two HITs that are provided by the responder.

4. Cell a3 is similar to Cell b3.

5. Cell c3, A dual-version initiator and a dual-version responder: the ini-
tiator has two HITs of the responder and it can start both HIPv1 and
HIPv2 BEX, however both requires to identify the version of the HITs
of the responder.

The analysis above clearly shows that a dual-version host cannot function
properly in all the situations, which means a smooth transition can be hardly
achieved. We reflected our worries to the HIP working group and the editor
of RFC5201 agreed with us that the ORCHID prefix has to be changed in
HIPv2 in order to support detection of the HIP version. Thus, this addresses
our compatibility worries and we continue the dual-version design based on
this assumption.

3.1.1.2 Dual-version Support

To achieve dual-version support, we first extend the handler function registry
service in the modularization framework introduced in section 2.3.2. Previ-
ously, the registration service only uses the combination of packet type and
current association state to index handler functions. For the dual-version
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support, we add the version number as the third dimension to the key index
for handler functions. By adding the version number to the criteria, enabled
version two related handler functions can be adopted in the HIPL project.
It also has two advantages. First, this design guarantees that the behavior
of HIPv1 in HIPL is free from the side effects of the dual-version. Second,
since HIPv2 is an improvement over HIPv1 and both versions share common
concepts, this design maximizes code reuse in HIPL. The version two imple-
mentation can reuse most of the functions for version one, and only registers
new functions if required by the HIPv2 specification.

In addition to the update of the handler function registry service, we also
design the way the version number is decided and handled in the dual-version
HIPL. Basically, the host decides it individually for each HIP association.
Based on the version of a HIP association, the host selects the corresponding
handlers for message processing. The version number for each HIP associa-
tion is determined by the I1 message. Ultimately, the initiator decides and
fixes the version for the lifetime of the HIP association when transmitting the
I1. At the initiator side, the version to use for the initiation is determined
by the HIT of the responder.

Regarding to security, the dual-version design is potentially prone to a
version downgrade attack, which is one kind of man-in-the-middle attack. In
this attack, a middleman deceives two hosts to use a lower version association
although stronger version is available by manipulating the version of the
I1 message. Lowering the version number may expose deprecated security
algorithms and known vulnerabilities of the old version which can be levered
by the attacker to ease cryptographic analysis or abuse the weaknesses of the
old protocol version.

In the BEX, the only message can be manipulated is the I1 message, and
other three messages are signed by its sender. Therefore, a middleman can
change a HIPv2 I1 message from the initiator to version one for the purpose
of downgrade the HIP version between two hosts. We can mitigate this attack
by checking the version number when the initiator receives the R1 message
from the responder. If the R1 message uses a version that is different from
the one used by the initiator for the I1 message, the initiator should stop the
BEX.

3.1.2 Agile Cryptographic Framework

HIP utilizes a number of security algorithms to protect its communication,
including asymmetric key algorithms for HI, one hash algorithm for HIT gen-
eration, Diffie-Hellman algorithms for master key generation and symmetric
key algorithms for data encryption. Some of these algorithms are fixed with-
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out negotiation between the initiator and responder while some have limited
options. Due to the Moore’s laws and advancements in cryptographic anal-
ysis, several algorithms in HIPv1 can be considered week and vulnerable
nowadays. Fortunately, HIPv2 introduces cryptographic agility to overcome
this. Cryptographic agility allows protocols to adopt or deprecate security
algorithms without changing the structure of the protocol itself.

HIPv2 achieves the cryptographic agility with algorithm negotiation. The
protocol has added new parameters to facilitate this process. Figure 3.1
illustrates the BEX in HIPv2 with new parameters marked with bold letters.
The new parameters are as follows.

The DH GROUP LIST parameter introduces the negotiation of the Diffie-
Hellman algorithm for the two parties in the BEX in step 1.

The HIT SUITE LIST parameter manages the asymmetric key algorithm
of the HI and the hash function to digest a HI to a HIT in step 2.

The HIP CIPHER parameter determines the encryption algorithm that
is in step 3 for data transmission after the BEX. This parameter is upgraded
from the HIP TRANSFORM parameter in HIPv1.

A R2 message in step 4 of HIPv2 is identical in format with a R2 message
in HIPv1, which is used to notify the initiator the success of the BEX.

Figure 3.1: HIP Version 2 Base Exchange

In Figure 3.2 we present an example of the Diffie-Hellman negotiation to
support the cryptographic agility in the HIPv2. HIPv2 defines each Diffie-
Hellman algorithm as supported by the protocol with a type value. New
algorithms can be included by assigning a new number. In the I1 message,



CHAPTER 3. DESIGN 30

the initiator provides its own Diffie-Hellman list (DH GROUP LIST). This
list contains type numbers of algorithms currently supported by the initiator.
In our scenario, the initiator supports Diffie-Hellman algorithms number 3,
4 and 8. Upon receiving the I1 message from the initiator, the responder
intersects the list from the initiator with its own list of supported algorithms
and selects the strongest algorithm. In figure 3.2, the list of the responder
contains algorithm types 3, 7 and 8. Algorithm numbers 3 and 8 match so
the responder chooses number 8 because it is stronger than the algorithm
number 3. The responder returns its complete Diffie-Hellman list along with
the selected algorithm to the initiator in its R1 message. When receiving
the R1 message, the initiator matches between its own Diffie-Hellman list
and the list from the responder to verify if the responder has selected the
strongest algorithm.

The negotiation of the Diffie-Hellman group list is the only case in HIPv2
which requires a more extensive verification of the negotiation result. The
purpose of this check is to avoid a downgrade attack for the Diffie-Hellman
negotiation. The I1 message is the only message in four base exchange mes-
sages without the protection of a signature, which means it can be easily
forged by a middleman. The middleman can strip away the strongest Diffie-
Hellman algorithms and leave weakest one in. This downgrade attack allows
the middleman to conduct a cryptographic analysis on the traffic and to re-
verse engineer the symmetric keys used for protecting the traffic with less
effort. Since the middleman cannot choose a weak algorithm not present in
the list, as it would fail the BEX, the downgrade problem only affects hosts
which offer weak Diffie-Hellman algorithms. To address this issue, HIPv2 en-
forces the responder to return full Diffie-Hellman group list for the initiator
to validate. Based on the list from the responder and its own list, the ini-
tiator conducts the algorithm selection again. If the result calculated by the
initiator is not identical with the one returned by the responder, the initiator
will restart the BEX process to avoid potential downgrade attack.

Figure 3.2: HIP Version 2 Diffie-Hellman Negotiation



CHAPTER 3. DESIGN 31

3.2 HIP Version 2.5

In this section, we presents the library-based HIP approach.

3.2.1 Requirement Specification

HIP for Internet, OpenHIP and HIPL projects implement HIP using a daemon-
based approach, where as HIPv2.5 is a library-based solution. HIPv2.5 shifts
the logical HIP layer over the transport layer, and it can be used with pro-
grammable APIs. In the context of this thesis, We refer to this library as
HIPL Library as it is based on the HIPL project. The goal of the library is
to meet the following requirements:

• It can reuse the functionality of HIPv2.

• It is an application-layer protocol. The control and data plane share
the same transport-layer connection (or flow in the case of UDP).

• The library operates within the process space of its caller and no extra
thread or process is needed.

• The library should offer a similar API for both TCP and UDP.

• The library should provide mobility support at least for the client side
and recreate the transport layer flow automatically. This includes de-
tection of lost traffic for TCP even during handovers and data consis-
tence guarantee.

• The API should follow the design of the Sockets API to minimize de-
veloper training costs and reduce the effort of porting existing Sockets
API-based applications, libraries and frameworks.

• The library should not require higher privilege.

The system architecture is illustrated in figure 3.3. The dashed lines
symbolized the APIs between two layers. HIPL Library is located above
the Sockets API. It uses standard Sockets API and presents its own APIs
for the voluntary applications. Applications can use its functionality either
indirectly or directly: and application can utilizes an IoC Library wrapper
which provides event-driven style APIs or alternatively the application can
be integrated directly on top of HIPL Library APIs2.

2IoC Library is stated in details in the Section 3.2.4.
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Figure 3.3: System Architecture of HIPL Library

Instead of the coarse interposition approach as Reliable Sockets (ROCKS)
described earlier in section 6.1.2, HIPL Library provides new APIs to appli-
cations. This way, the applications are aware of the underlying security
mechanisms taking place. Figure 3.4 illustrates shifting HIP layer above
the transport layer. Thus, HIP control and data plane packets are encapsu-
lated inside TCP or UDP packets. This relocation together with the library-
based requirements, introduces many new challenges to the design of the
HIPv2.5: first, the port numbers from transport layer need to be managed
by the library; second, the library requires a new mechanism to demultiplex
HIP control-plane and data-plane messages arriving at the same source port;
third, the library-based solution uses single thread and does not run on a
dedicated process, which means the library should handle events only when
the application passes control to the library (by calling functions of the li-
brary); last but not least, the mobility mechanism for the transport layer
is, especially for a wrapper style library, entirely different. In the following
sub-sections, we present a legacy compatibility analysis and address these
challenges one-by-one.

3.2.2 Legacy Compatibility Analysis

The main purpose of the library is to improve the deployability of HIP. If the
library can offer better backward compatibility to reduce the migration cost,
more applications may be willing to use HIP. We evaluate the compatibility
of the library in four cases: 1) client and server that are both use the library,
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Figure 3.4: Protocol Stack Change from HIPv1/HIPv2 to HIPv2.5

2) legacy client and server that do not use the library, 3) legacy client but
server on top of HIPL Library, and 4) client on top of HIPL Library but
legacy server. We focus on the last two cases as the first two cases do not
have compatibility issue.

The library can support the third case3. The server can notice that client
did not start a BEX and continue in ”by-pass mode” where it abstains from
processing and passes all function calls through.

The last case can be further divided into two sub-scenarios: opportunistic
BEX and normal BEX. The opportunistic BEX is problematic because the
client does not look up the server identity from anywhere, so it cannot know
if the server is HIP capable. It could be resolved by timing out in the library
and then falling back to normal TCP/IP. A more optimal way with TCP
options are described by Bishaj et al [7]. The other sub-scenario of normal
BEX is an easier case because the client has resolved the host name of the
server using some mechanism and should know based on result whether the
server supports HIP or not. A legacy server results in a IP address, so the
library should fall back to normal TCP/IP and restrain from all processing4.

3Not yet available in current library prototype
4Naturally, the opportunistic mode could be tried here but it is a policy question.
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3.2.3 Demultiplexing of the Control and Data Plane

HIPv2.5 control and data plane share faith with the same transport layer end
point for a single HIP association. This behavior differs from protocols such
as File Transport Protocol (FTP) which uses one port for FTP commands
and one port for data transmission. The character stream oriented nature
of TCP makes framing between control and data plane messages a bit more
challenging. When using TCP, a host can possibly receive: 1) half part
of a control message or a user message; 2) several consecutive control or
user messages; 3) a mix of condition one and two. When the underlying
transport-layer protocol is UDP, the boundary between a control and data
plane message is more natural as it is defined by the scope of each UDP
message, since an UDP packet contains either a control or a data plane
message.

To demultiplex control plane and data plane from the same TCP stream,
we have considered two possible solutions. The first alternative is to encap-
sulate the data-plane message in HIP message body as a HIP parameter.
The second alternative is to create a new header for the data-plane message.

Solution one requires a HIP header for each data-plane message. It has
several advantages: first, it can conform to the HICCUPS [34], which provides
a standard way to encapsulate application data into a HIP message. Second,
the HIP message format is a flexible structure and it allows simple future
extension. The drawback of this solution is the lowered Maximum Transmis-
sion Unit (MTU). A HIP header is already 40 bytes long, and except the
packet length field, most of other fields are not necessary for HIPv2.5.

As the library-based model is already incompatible with standard HIP,
we chose to create a new header that should be more compact than a full
HIP header. The new library header is only four bytes long. Figures 3.5
illustrates the encapsulation of HIPv2.5 datagrams.

For control-plane messages, the four bytes of library header are always
zero. The size of the HIP message body can be determined by the HIP header
next to the library header. This format conforms to RFC-5770 [28], which
encapsulates control messages into UDP for NAT traversal purpose. Thus,
the UDP-based Control plane remains compatible with the relay extensions.

For data-plane messages: the four-byte library header stores the size of
the data-plane message in the network byte order. Therefore, the maximum
size of a data-plane message is 4GB (2 power 32), which should be far more
than enough for normal cases. The 4GB size limitation also confirms to the
IPv6 Jumbograms specification for MTU larger than 65575 bytes [10]. Once
the receiving side receives a library header with a value more than zero, it
expects a data-plane message with the length specified by the library header.
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Figure 3.5: HIPv2.5 Packet Encapsulation

3.2.4 API Design Alternatives

For a networking library or framework, there are at least two design alter-
natives for the API. A common approach, such as adopted in OpenSSL, is
to provide a wrapper API around the Sockets calls. Another is called the
Inverse of Control (IoC) or which is sometimes referred as event-driven, and
a typical example for this breed of libraries is Twisted5. The difference be-
tween these two designs is the owner of the right of control. In the wrapper
case, the application is in control of the flow of execution, whereas in IoC
the underlying library takes over. We refer the former one as a wrapper li-
brary design, because applications are in the control of themselves and they
decide the timing of passing control to the library by calling its functions.
Conversely, in an event-driven design, applications register callback functions
first, and pass the control to the library. After this, the library determines
when to call those registered functions. Typically, event-driven applications
employ threading to sustain concurrent operation.

The most imminent obstacle for a wrapper style HIPL Library is that the
timing of handling HIP control-plane messages and conducting connectivity
check is non-deterministic. A daemon-based solution runs in its own back-
ground process, and similarly an event-driven solution also has full control of
the process. Both of them can perform connectivity change detection at any
time, but this is not the case for HIPL Library as it relies on applications to
pass the control to it.

A reason for choosing a wrapper library design in HIPL Library is flexibil-
ity. A wrapper library is generic and can be the foundation of an event-driven
library. However, the main reason is that porting of existing applications
based on the Sockets API is more straightforward with the wrapper API
than with event driven.

5http://twistedmatrix.com/
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In HIPL Library, the BEX is triggered when an application uses the li-
brary for data operations (sending or receiving) for the first time. An applica-
tion acts as a HIP initiator if it sends data. Correspondingly, an application
acts in the role of HIP responder if it is receiving data. The library delay
data transmission until the potential transport-layer handshake and the BEX
are completed between two end points. The BEX is hidden transparently by
the library.

Figure 3.6 illustrates the BEX in the library. In the first step, the two
end points establish a transport-layer connection by using the API from the
library. This step is not necessary for UDP but mandatory for TCP (a three-
way handshake). In the second step, the application on the left side requests
to send N bytes of user data. The left-side application has been identified
as a HIP initiator. Then the library triggers a BEX in steps 3, and it is
completed in steps 4, 5 and 6. Once the BEX finishes, the library delivers
the N bytes of data as requested by the application.

After the establishment of the HIP association, most of messages between
two end points are data-plane messages. Occasionally, an end point sends
HIP UPDATE messages to inform location changes or sends a HIP CLOSE
message to shutdown the current HIP association. For an UPDATE message,
the library updates the new location transparently from the application. For
a CLOSE message, the library notifies the application of the termination of
the HIP association when the application attempts to continue data opera-
tions.

In order to support the mobility, the control plane is also responsible for
tracking the connectivity status. The detail of the connectivity detection and
mobility handover process at the control plane is presented in the following
section.

3.2.5 Mobility

When the library determines that a connectivity change occurs, it should
initiate a handover, create a new transport-layer flow and restart data-plane
transmission. The library assumes that mobility can only be supported be-
tween two associated applications, which means that a connectivity change
in the middle of the BEX will not be considered as a valid mobility sce-
nario6. As a wrapper library, it can only performed the connectivity status
check when it is in control of the flow. If an application has a large inter-
val between function calls, the interval for connectivity status check is also
correspondingly long. A connectivity change during this interval also affects

6HICCUPS extensions [9] may be more suitable in such scenarios.
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Figure 3.6: HIPL Library BEX Process

the remote side, which has to wait for the new status notification from the
application in order to continue data transmission. This is a limitation of
the wrapper library design, but it is possible to be fixed by an event-driven
library on top of the wrapper library.

The mobility support of the library allows it to react to connectivity
change transparently, without assistance of the application. The library
overcomes mainly three problems to achieve mobility support: firstly, the
library needs to detect connectivity status changes with limited control of
the whole application and user level privileges; secondly, the library needs
to create a new mechanism to process transport-layer handover; lastly, the
library should guarantee the data consistency for TCP after the handover.

3.2.5.1 Buffer Management and Data Consistence

The library maintains two buffers for each TCP or UDP end point. Typically,
the network stack of a OS has also its own buffers. In order to distinguish
between the two terms, we refer to the input and output buffers in the library
as “library input and output buffers” and call the input and output buffers
managed by the network stack as “kernel input and output queues”.

The library input buffer is used to demultiplex the control from the data
plane for a streaming protocol such as TCP. The library appends the receiv-
ing data to the library input buffer and then follows the parsing mechanism
as described in the section 3.2.3 to distinguish between control and data
messages. If a control or data message spans two or more TCP packets,
the library input buffer can detect it by checking the library header in the
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payload, and waits for the remaining part of the message.

Figure 3.7: Application Data Assembling through the Library Input Buffer

The library input buffer can also assemble consecutive data-plane mes-
sages to make the whole receiving process more efficient. As illustrated in
figure 3.7 (the gray parts in the library input buffer is the library header),
if there are several data-plane messages residing in the library input buffer
side by side and the application offers abundant application buffer to hold
them, the library can expedite the receiving process by striping of all the
library headers and aggregating application data into the application buffer
in one function call. In the figure, the library delivers the application data
one to three from three consecutive TCP packets to the application in one
function call. This manipulation is valid because the application has the
same character-oriented assumption on the receiving data.

On the other hand, the sending side of the library needs to overcome
another issue of potential data loss in the kernel output queue. The library
is based on the Sockets API and if TCP is used, the socket library will inform
the application that data is sent as long as there is enough size to hold sending
data in the kernel output queue. It is the responsibility of the network stack
to deliver those data in the kernel output queue but when the host locator
changes, the network stack does not assure the data remaining in the kernel
output queue to be delivered. For this reason the library includes a output
buffer.

The library output buffer stores undelivered application data. To be more
exact, the term “undelivered” here refers to the data that has not received by
the remote side. Then the data in the kernel output queue will be considered
as undelivered and cached in the library output buffer. The buffer guarantees
that data not received by the remote side will not be dropped if a connectivity
change occurs.

In the context of the library output buffer, the sending process of the
library can be divided into 4 steps: firstly, the application initiates a sending
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action by calling function of the library and provides the data to be sent;
secondly, the library gains control of the flow and checks the delivery status of
existing data in the library output buffer. If some data is already successfully
delivered, the library removes it from the output buffer. Otherwise, the
library starts a timer for the handover. If the data remains undelivered
until the timer expires, the library triggers the handover; Thirdly, the library
appends the new data as provided by the application to the end of the output
buffer and the data is then tracked by the library; lastly, the library uses a
standard Sockets API call to deliver the new data.

The library output buffer plays a significant role for mobility support. In
the following two sections, we explain the connectivity status detection and
handover mechanism.

3.2.5.2 Connectivity Status Detection

Section 3.2.4 explained the timing of connectivity status detection in a wrap-
per style library design such as HIPL Library. This section explains the de-
tection method. As a user-level library, HIPL Library can only use user-level
APIs, which drastically limits the range of mechanisms it can utilized for
connectivity status detection.

The library relies on the relationship between its output buffer and the
kernel output queue for connectivity status detection. Although retrieving
the content of a kernel output queue is not supported by most of network
stack implementations, querying the data size in the queue is allowed, which
can be a good hint for the library to detect a change in connectivity. Assum-
ing that two applications A and B are using the library to communicate with
each other, the connectivity status detection in the host A includes following
steps:

1. Application A calls a sending function in the API to transmit N bytes
data to application B. The library appends the data to the output
buffer and updates its counter.

2. The library calls a function in the Sockets API to send data to appli-
cation B. The N bytes of data is stored in the kernel output queue and
tracked by the network stack.

3. When the library obtains control from the application for the next time,
it first checks the size of the kernel output queue. If the queue size
decreases by K bytes, this K bytes of data is delivered by the network
stack and the library removes it from the output buffer. Otherwise, the
buffer remains unchanged.
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4. If the out buffer is not empty and the library cannot remove data
from it for a certain period of time, the library consider the current
transport-layer connection is broken and it performs a handover.

The detection mechanism is efficient and suitable for applications that
has a frequent request and reply pattern (for instance, Telnet) as it can track
connectivity status with only small performance overhead. However, it also
has two drawbacks. First, an “download”-oriented application that receives
data constantly but seldom has data to send, hardly benefits from this mech-
anism because the utilization of the library output buffer is too low to trigger
the detection mechanism. Second, the precision of the timer to trigger han-
dover greatly influences the handover performance. The library should offer
a reasonable default time but allow the application to readjust it according
to its use scenario. If the time value is too long, the user determines that the
connection is dead. If it is too small, the library may trigger handover on a
functioning but temporarily congested connection.

The fixed timeout could be improved by collecting cross-layer link statis-
tics dynamically, and use this as an active feedback loop to readjust the
timeout value. For instance, TCP congestion control estimates the average
Round Trip Time (RTT) as an indication of the connectivity status. Since
this library is in a prototyping phase, we keep the design simple and use a
fix timer. In the future, an adaptive timer mechanism can be added to the
library without affecting its current functionality.

In addition to monitor the size of the kernel output queue for connectiv-
ity status detection, there are two alternative solutions. First, The library
can track the information of all network interfaces in a host and evaluate
whether a new change deprecates current transport-layer connection, thus
requiring a handover. The library can perform the interface tracking during
the execution of any API. A second solution is the IoC version of the library.
In this version, the library is in control of the program flow and schedules
events, thus the library can perform connectivity status check in a periodical
manner.

3.2.5.3 Handover

The handover support in the library is constrained to the client side be-
cause we assume that servers are always standard-alone machines and rarely
relocate while mobile devices usually act as clients. This does not mean
that the library is unsuitable for multihoming servers or P2P networking.
The client-side handover just means that the initiating side is responsible
for triggering the handover to avoid the communication disconnection be-
tween two hosts. The client side handover mechanism can be divided into
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three stages, transport-layer migration, update message exchange and buffer
retransmission.

The core of the handover is to renew the transport-layer end point. If
the library detects a connectivity change, it assumes that the previous end
point is broken and creates a new one to substitute the old. The library uses
the new end point to communicate with the same remote side, to update its
new information and finally to retransmit the remaining data in the library
output buffer. Figure 3.8 illustrates the process of handover which consists
of three HIP UPDATE messages adopted for the library from RFC5206 [33].

First, the initiating side detects a connectivity change, creates a new
transport layer end point and triggers the next stage which sends a HIP
UPDATE message to the responder. The new end point is created with-
out specifying a local address thus the network stack can choose the most
suitable address for handover. We assumes that the responder is able to ac-
cept multiple simultaneous transport-layer sessions, otherwise the handover
cannot continue.

Second, the responder receives the first UPDATE message on the new
transport-layer end point. From the message header, it determines that it
is a handover request from an known initiator. The responder processes the
packet and replies back the second UPDATE message.

Third, the receiving of the second UPDATE message in the initiator side
indicates that the responder can be reached through the new transport-layer
end point and it has accepted the handover request. Then the initiator replies
with the third UPDATE message as a confirmation and retransmits data in
its library output buffer. If the output buffer of the responder is not empty,
the responder also starts buffer retransmission at this point. After that, both
parties can discard the previous transport-layer end points and transition to
the new pair of end points.

The insecure handover process is validated by the secure UPDATE mes-
sages that are protected by MAC and signed with the public key of the
originator. The message authentication is crucial because otherwise a mali-
cious application can hijack or mount a DoS attack on a session by injecting
a forged UPDATE message to the responder side.

Three parameters are involved in the update message exchange. They are
Sequence (SEQ) parameter, ACK parameter and Synchronization (SYNC)
parameter. The SEQ and ACK parameters are standard parameters for
a HIP UPDATE message and they are used for the purpose of reliability
and ordering of the control plane. For TCP mode in the library, these two
parameters are redundant because TCP is already a reliable protocol with
guarantees of ordering. However, they are needed for the update message
exchange with UDP mode to guarantee the two properties for the control
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plane. The library retains these two parameters to conform to the HIP
standards and to unify the handling of TCP and UDP in the library. In
addition, the two parameters are secured with public-key signatures, which
is not supported by TCP.

The SYNC parameter is an extension defined by the library to support
buffer retransmission. The parameter contains two values: the Number of
bytes Sent (NSENT) and the Number of bytes Received (NRECV). The
values represent the number of bytes sent and received as observed by the
sender of the parameter7. Both of the values are currently 64 bits which
exceed TCP window size and is probably enough for UDP-based applications.
The values are exchanged to synchronize two connected parties, so that they
can determine what part of the buffer needs to be retransmitted.

Figure 3.8: HIPv2 Handover

The SYNC exchange is designed to ensure correct data delivery during
handovers because vanilla TCP does not support “migration” from one con-
nection to another, let alone UDP. It is obvious that all data left in the
library output buffer during handover should be re-transmitted. However,
as explained in section 3.2.5.2, an handover can occur on a temporarily con-
gested path, and the new transport layer end point created for the handover
process continues using the same path. In this case, the previous connection
is not broken and chances are that unsent data in the corresponding kernel
output queue will be delivered by the network stack while our handover pro-

7In the future, the values could also be used to implement forward/rewind functionality
for media streams.
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cess. Without the SYNC exchange, the library may re-transmit the same
part of data, which causes the remote side to receive duplicated data.

3.2.6 Comparison between Sockets and HIPL Library
API

Our library API is distinct from Sockets API in three aspects. First, the
library has a “hipl ” prefix for all the function calls. Second, the initializa-
tion can be done without explicit DNS resolution as the HIPL Library API
supports host names. Third, our library does not support file descriptors
but has a similar concept - the new descriptors cannot be used in read/write
calls unlike the socket descriptors8.

8The implementation section details the new descriptor used in our library.
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Implementation

In this chapter, we present the implementation of HIPL Library, which in-
cludes the function hierarchy design, data structures, solutions to support
the select() function and handover implementation.

4.1 Overview

The HIPL Library offers APIs mimicking the Sockets APIs that has several
alternative functions for the same purpose. For instance, the send(), sendto()
and sendmsg() functions are all for sending of data, but are optimized for
different use scenarios. Our library follows this style but internally uses a
function hierarchy to build those APIs.

The hierarchy is illustrated in figure 4.1: at the bottom part of the figure
there are four core internal functions: buffered sendmsg(), buffered recvmsg(),
hipl sendmsg internal() and hipl recvmsg internal(), which implement the
core features and form the basis for all public APIs. The first two functions
handle the library input and output buffers during the data transmission
while the last two, hipl sendmsg internal() and hipl recvmsg internal() are
responsible of the BEX and handover detection. The top layer consists of
public APIs, and their main task is sanity checking. The purpose of this
hierarchy is to modularize the implementation.

A pair of local and remote end points for HIP association in the library
is referred as a HIPL Socket (HSOCK). Similar to the socket descriptor,
each HSOCK has its own identifier. This identifier can be used to access the
public APIs of the library. However, contrary to a socket descriptor, this
identifier is only a reference number to a particular HSOCK and it does not
support any file related operations. The identifier acts as a bridge between
applications and the library, hiding all internal complexities and shielding

44
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the internal data structures from inadvert modification.
When the library is used in the TCP mode, several additional functions

have to be supported. For instance, the hipl connect() function is for estab-
lishing TCP connection. The hipl listen() function transitions a HSOCK into
listening mode. The hipl accept() function accepts a new TCP connection
from its client and peals off a new HSOCK from the old one.

Figure 4.1: HIPL Library Function Hierarchy

Internally, the library maintains a hash table of HSOCK-related struc-
tures, where the identifier of HSOCK as the hash key. Table 4.1 lists the
members of a hash value and describes their purposes.

4.2 Select Support

All Portable Operating System Interface (POSIX) compatible systems sup-
port synchronous I/O demultiplexing via functions such as the select(). The
select() function allows user to monitor a list of file descriptors, and get
notification from the OS when one or more descriptors are ready for further
reading or writing operations. To support the select() and other similar calls,
the library needs to solve two problems.
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Name Description

sid The identifier of the HSOCK. Currently the
library supports no more than 65535 (16-bit)
HSOCKs simultaneously for a single application.

ha The HIP association status

peer locator The current IP address of the associated applica-
tion

peer hit The HIT of the associated application. It is ob-
tained when the hipl connect() function is called.
For UDP, the availability of this information is de-
layed to the first data retrieval operation.

sock fd The transport-layer end point currently in use

ho sock fd The transport layer end point that is created for
the handover process. When a handover is com-
pleted, the value of the filed sock fd is replaced by
this value.

sendbuf The library output buffer, which is a circular queue
implementation for fast data processing

recvbuf The library input buffer, which is a queue imple-
mentation for fast data processing

stat ts send sz The time stamp of last successful data delivery.
This field is used for connectivity status detection
together with the field cfg unsent to.

stat recv sz A 64-bit field which records the total number of
the bytes received by this HSOCK

stat send sz A 64-bit field which records the total number of
the bytes delivered to the associated application
by this HSOCK

cfg unsent to The timer threshold to trigger a handover process.
If data in the library output buffer is unsent until
the timer expires, the library will trigger a han-
dover.

Table 4.1: Members in the HSOCK Data Structure
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First, TCP handshake consists three messages and the BEX procedure
consists of four messages. Handling all of these packets in one call of the
select() function is impossible because it returns when the first packet is
available. For instance, Assuming that a responder is waiting for an I1 mes-
sage from a initiator. It first uses select() to check whether its channel is
readable. If yes, it processes the I1 message and then sends a R1 message to
the initiator. At this point, it expects an I2 message from the initiator. How-
ever, the responder must not read the channel immediately, because there is
a high chance that the I2 message is not yet delivered by the initiator and
calling a read function on the channel will block the whole process.

Second, the handover process creates a new socket to recover the commu-
nication with the server. The server peels off a new socket using the accept()
function. The library needs to find a mechanism to handle this new socket
at the library level.

In the following two subsections, we describe solutions for the two prob-
lems.

4.2.1 Delayed BEX

The library provides a hipl connect() function to establish a transport-layer.
It is mandatory for TCP and optional for UDP. The BEX is triggered
either during this function call, or during the first data related operation
(read or write). For UDP, the latter is supported by the library, because
hipl connect() function is optional.

For TCP, the connection phase also has a blocking issue at the respon-
der side because it requires the library to handle both the TCP handshake
and BEX together in hipl accept() function. Thus, the wrapper function
hipl accept() could still block despite its has internal accept() call has re-
turned a new socket descriptor successfully.

In the implementation of the library, we decided to delay triggering of
the BEX until the applications sends the first data bytes in order to keep
TCP and UDP symmetric and support select function. The hipl connect()
and hipl accept() are used only for the purpose to create a transport-layer
connection. This decision also simplifies the implementation logic of the
library, since hipl sendmsg internal() is the only one place to trigger BEX.

4.2.2 On Blocking Operations

Delayed BEX solves the blocking problem of handling the TCP connection
establishment and BEX together after a select() call. However, the handover
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and BEX procedures still have the the problem of handling multiple messages
within a single select() call.

To support the select() function, the library provides an non-blocking
option to configure its behavior. The library can block all the way until
the BEX or handover finishes. Alternatively, The library can support non-
blocking operation during the BEX or handover process, thereby supporting
asynchronous calls.

The library divides a long process that involves handling multiple mes-
sages to several short operations each of which only handles one message.
For each short operations, the library returns a status code to the applica-
tion and the long process can be resumed at a later time. Using Figure 3.6
as an example, the BEX process at the responder side includes 6 steps which
involves three select() calls:

1. The responder call the select() function for the first time to monitor
the socket, and it receives a notification that the socket is available to
read.

2. The responder calls a reading function to retrieve the data. The call
is handled by the library and it first reads the I1 message. It responds
with a R1 message to the initiator, saves state and returns control flow
to the caller with a notification that the library is processing the BEX.

3. The responder calls the select() function for the second time to continue
monitoring the socket and receives another notification for availability.

4. The responder continues with the library read operation again. The
library retrieves the I2 message and responds with a R2 message to the
initiator. Finally the library returns a notification to the caller that
the BEX is finished.

5. The responder continues monitoring the socket and retrieves the third
notification for read availability.

6. Finally, the responder receives application data from the initiator.

The non-blocking mode returns status of the current ongoing process
(BEX or handover) using different status codes. Table 4.2 lists all of the
codes, their scenarios and descriptions. Non-blocking applications can check
the return code of the library for the progress of the BEX or handover process.
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Code Description Scenarios

139000

EWAITBEX

The initiator or respon-
der is processing BEX.

1) I1 is sent by the initiator.

2) Initiator is waiting for R1.

3) Initiator is waiting for R2.

4) Responder is waiting for I1.

5) Responder is waiting for I2.

139001

EBEXESTABLISHED

The HIP association is
established.

1) Initiator has processed R2.

2) Responder has processed I2.

139100

EHOCOMPLETED

The handover is com-
pleted at the client side.

Handover, client side has pro-
cessed the second UPDATE
message.

139101

EHOSOCKSWAPPED

The handover is com-
pleted at the server side.

Handover, server side has pro-
cessed the first UPDATE mes-
sage. The current HSOCK is
discarded by the library be-
cause it is only for handover
purpose.

Table 4.2: Non-blocking Status Code
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4.3 Handover

To demonstrate the handover process, Figure 4.2 shows an example scenario
of a client-side handover in detail. The operations marked with solid line are
executed by the application while the operations marked with dotted line are
internal operations of the library. The handover consists of nine steps from
1 to 9 and each step is further divided into sub-steps marked by alphabetic
letters.

• In steps 1 and 2, the server side is set up and ready to serve incoming
connections. The server application first uses hipl listen() to switch
its HSOCK to the listening mode (step 1-a). Then it is blocked in
the hipl accept() function and it is waiting for incoming connections
(step 2-a). Internally, in steps 1-b and 2-b, the library utilizes Sockets
functions listen() and accept() to operate the socket.

• In step 3-a, the client application calls hipl connect() to reach the
server. The library calls the Sockets function connect() to establish
a transport-layer connection in step 3-b. At this point, the client side
only initiates a normal three-way handshake.

• In step 4, the sever side accepts the new TCP connection, then the
server application calls the hipl recvfrom() for receiving data from the
client side.

• In step 5-a, the client application executes its first data transmission
via hipl sendto() function. Since there is no existing HIP association
between the two applications, in step 5-b, the library at the client side
triggers a BEX procedure with the server side and they establish a HIP
association. In step 5-c, the library delivers the data to the server side.

• Between steps 5 and 6, the client relocates and switches to a new IP
address.

• In step 6-a, the client application requests a data sending again which
fails due to the relocation. However, since the handover timer does not
expire and the kernel output queue are not full, the sending operation
returns successfully. The client application keeps sending until the
handover timer expires. The library starts the handover process via the
three UPDATE messages in step 6-b. After that both sides retransmit
undelivered data from their buffers in steps 6-c and 6-d.
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• After the handover, both the client and server have successfully mi-
grated to a new transport-layer endpoint and the communication chan-
nel is recovered. In steps 7, 8-a and 8-b, the server application receives
data again from the client application.

• In step 9, the client side terminates the connection with the hipl close()
function.

Figure 4.2: A Client-Side Handover
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Experimentation

To validate the prototype, we have implemented two applications to test
the library from different perspectives. The first application is a system
tester that was adopted into the HIPL project to facilitate rapid testing for
developers. This software does not require administrative privileges and it is
based on the same code as the daemon which makes it very useful for system
testing. The second program is a HIP version netcat1. Written from scratch,
Netcat is a generic-purpose tool that can be used for sending any kind of
data, albeit typically it is used for echoing of UNIX standard or keyboard
input.

5.1 System-test Application

To ensure the quality of the software, developers in the HIPL project have im-
plemented many unit tests that are automatically executed after each source
code commit on the main branch. However, the unit tests only verify code
at the function level and system testing to verify the interaction between
different function execution traces is missing.

HIPL Library fulfills this gap. The library itself uses the same modular-
ization framework as the HIPL daemon process. The same function chains
(except for the functions for IPsec, which require root privilege) are also
reused by the library. Thus, processing of BEX in the library and the dae-
mon can be considered to be almost identical. If the BEX fails in the library,
it should also fail in the daemon, thereby making the library a useful system-
test platform.

Utilizing the API of the library, we built a single-threaded program. The
test program includes BEX on top of TCP and UDP. As the HIPL com-

1http://nc110.sourceforge.net/
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munity preferred a singled-threaded and single process design, the program
interleavingly acts as client and server and uses the library API to establish
HIP association with itself through the loopback interface.

The library is based on tokens that resemble socket descriptors but can-
not be used as a replacement in standard Sockets API calls. Thus wrapper
functions need to be utilized in all socket calls, including select()2. The
wrapper function for connect() has another implementation limitation as it
is currently supports only non-blocking operations. If the application by-
passes the abstraction tokens and utilizes the socket descriptors directly, the
handovers of the library are ineffective.

The test program is merged to the main branch of the HIPL project and
has been reviewed by the community. It is also compiled and executed for
the Scratchbox3 Advanced RISC Machine (ARM) cross-compilation environ-
ment for the Maemo4 5 platform, which demonstrates its potential for mobile
devices.

5.2 Hipnetcat

The Hipnetcat is a character transfer application supporting both client and
server functionality based on the library. The software is not only a guide
for developers who want to use the library, but also a diagnosis tool for the
developers of the library. The software can be both TCP and UDP-based.
The synopsis of it is described in appendix B. We also provide two example
runs to demonstrate the usage of hipnetcat, one for TCP and one for UDP
in the appendix.

The client part of the hipnetcat captures data from the standard input
and relays it to the server. The server can be another hipnetcat application
or any application built on top of the library. Hipnetcat echoes responses
from the server to the standard output of the client.

If hipnetcat is running as a server, it reads data both from the standard
input and from the client. For the data from the standard input, the software
then sends it to the client. For the data from the client, hipnetcat echoes it
to the standard output.

Hipnetcat utilizes HIPL Library to support mobility. The handover is
transparent at the client side. For the server side, hipnetcat uses the se-
lect() function to monitor multiple sockets, thereby being able to accept the
handover request from the client and recover their communications.

2which remains to be unimplemented
3http://scratchbox.org/
4http://maemo.org/
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Related Work

6.1 Mobility

In this section, we describe various mobility solutions and compare the dif-
ference between each of them and our library approach.

6.1.1 Mobile IP

Mobile IP [37] can be considered as a predecessor of HIP, laying a foundation
for improvement in HIP. Mobile IP uses a pair of IP addresses, one acts as
a static identifier and the other acts as locator. HIP has adopted a similar
approach of splitting the locator and identifier roles, but uses a public key
from an asymmetric key pair as identifier to provide built-in security mech-
anisms. Compared to Mobile IP, which operates on the network layer, our
library approach is located on top of transport layer and does not requires
extra infrastructure support or configurations.

6.1.2 Reliable Sockets (ROCKS)

ROCKS [52] is a library-based solution for mobility. ROCKS is based on
interposition and it intercepts function calls to Socket APIs to add its own
mobility mechanisms. ROCKS supports TCP and it introduces a new proto-
col for its control plane based on Diffie-Hellman exchange. Moreover, ROCKS
utilizes internally another UDP-based socket for the control plane.

Although the HIPL Library is also based on the Sockets API, it provides
new APIs instead of relying on the library interposition. The interposition in
ROCKS could cause integration problems if the application also utilizes the
integration mechanism. This kind of problems are tricky and hard to debug.
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The HIPL Library cannot achieve zero-modification migration as ROCKS
does, but it avoids compatibility issues in library interposition.

The control and data plane in the HIPL Library are coupled, meaning
that they share faith. In contrast, ROCKS control and data plane do not
share faith, which has some negative consequences. First, firewalls may drop
its UDP-based control plane. Second, NAT penetration needs to be done
twice, one for each plane. Regarding to security, HIPL Library conforms to
HIP which is standardized, while the new protocol introduced by ROCKS
still needs validation.

6.1.3 Multi-Path TCP

Multi-Path TCP (MPTCP) [45] takes advantage of multiple available paths
to support multihoming and load balancing. From the mobility point of view,
Multi-Path TCP (MPTCP) is ideal if multiple paths are available because
it can detect a connectivity failure and switch to a better path. However,
the problem of intermittent failures on a single path are not in the scope of
MPTCP, thus it does not support mobility.

An implementation of MPTCP for Linux1 is located in the kernel space
and thus it requires a new kernel image. Once the customized kernel is ready
and MPTCP is configured properly, no modification is required for applica-
tions. In the future, MPTCP may be available in vanilla Linux kernels.

MPTCP can be considered as a supplementary solution for HIPL Library.
If the library is used with a MPTCP-enabled stack, it can solve the mobility
issue for a single path while MPTCP offers a more optimal solution for mul-
tihoming. Therefore, the integration of the library and MPTCP has engaged
interests from MPTCP community.

6.1.4 DTLS Mobility

The DTLS mobility [46] is a library-based solution for the mobility of the
DTLS protocol [42]. To support mobility, the authors add several extensions
on the DTLS protocol, such as Connection Identifier (CID) to distinguish
between connections, utilization of heart beat extension for handover, peer
validation and path MTU discovery.

The DTLS mobility is bound to the OpenSSL APIs, which requires some
effort to migrate a Socket-based application but is effortless for applications
that already use OpenSSL. Unlike HIPL Library, which supports both TCP
and UDP, DTLS mobility only offers mobility support for datagram packets.

1http://mptcp.info.ucl.ac.be/
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6.1.5 SSH and TLS Resilient Connections

Koponen et al present a session layer mobility solution for Secure Shell (SSH)
Transport Layer Protocol [50, 51] and TLS [12] called resilient connections
[25]. Their work extends current SSH and TLS by adding a synchronization
process for resilient connections. It uses OpenSSH and PureTLS as imple-
mentation targets.

The resilient connections are only for the SSH and TLS protocols at the
session layer, while HIPL Library provides more general APIs for all transport
and application layer protocols. Regarding to mobility, the resilient connec-
tions and HIPL Library share many common properties, such as re-creating a
new transport-layer end points for the handover, buffering application data,
combining control plane and data plane in a single transport layer end point
and providing mechanisms for buffer migration.

6.1.6 TESLA

The Transparent Extensible Session-Layer Framework (TESLA) [44] is an
all-in-one solution that includes support for mobility, encryption, application-
layer routing and connection multiplexing. TESLA adds a new flow-based
abstraction on top of the socket, and provides higher level APIs for appli-
cations. The handling of a flow in TESLA involves a chain of handlers.
This chain enhances the flexibility of the protocol and new functions can be
adopted separately by including a new handler.

Similar to HIPL Library, the mobility support in TESLA is also achieved
by using buffers to preserve the data. TESLA APIs are event driven. In
contrast, HIPL Library offers a Sockets API oriented interface and event-
driven support is expected to be offered by another library written on top of
HIPL Library.

6.1.7 Other Transport Layer Mobility Solutions

In a survey paper on transport layer mobility solutions [4], the authors
have analyzed several approaches, including MSOCKS [29] and Migrate [47].
MSOCKS is a proxy-based solution, and it requires changes to TCP in the
networking stack. Migrate TCP also demands changes to the networking
stack. It uses DNS to record the location and to facilitate handovers. The
survey also presents several other approaches and compares them according
to various criteria. A comparison between layer two and layer three mobility
based on inter-operatable socket and Mobile IPv6 is presented by Kimura[22].
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6.2 Name-based Sockets

The Name-Based Sockets API [18] improves the current Sockets API by
leveraging DNS-based, symbolic names as host identifiers. we have adopted
a similar approach for the API of HIPL Library as it inputs FQDN names
(in addition to HITs and IP addresses) and thus can hide all the details
related to addressing. The Name-Based Sockets API introduces a new name
exchange protocol and a new address family (AF NAME). A benefit of the
name-based solution is that IP address migration is smoother without session
interruption because applications relies on more stable names instead of IP
addresses that changes due to relocation [5].



Chapter 7

Future Work

Some unimplemented features of HIPv2 in the HIPL project and some ideas
for improving HIPL Library are described in this chapter.

7.1 HIPv2

For HIPv2 support in HIPL, the dual-version and cryptographic agility frame-
work have laid a solid foundation for implementing the remaining, which
includes mainly four features.

First, HIPv2 expands the static Key Derivation Function (KDF) mech-
anism designed for HIPv1. It is decided by the Diffie-Hellman negotiation
result in HIPv2. Second, the new OGA definition was not published in the
ORCHID specification during the time of thesis writing. Once the new spec-
ification is finalized, the support of the OGA bits for HITs in version 2 can
be developed for HIPL implementation. Third, the parameters SEQ and
ACK are mandatory for an UPDATE message in HIPv2, while they are op-
tional for HIPv1. The UPDATE message handling for version 2 should be
upgraded accordingly. Last but not least, instead of SHA-1, HIPv2 recom-
mends the more future-proof SHA-256 hash algorithm for enhanced security.
This algorithm should be adopted into HIPL implementation.

7.2 HIPv2.5

The library prototype demonstrates the feasibility of a library-based solution.
As the current library is a prototype, it has room for improvement in different
aspects.
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7.2.1 Protection of the Data Plane

The data plane in the prototype is operated in clear text. Since the BEX
establishes a master key for the HIP association, the library can adopt a
symmetric key algorithm to protect the data plane. One viable option is
the libSRTP1 library. This library is an implementation of the Secure Real-
time Transport Protocol (SRTP) [15, 27] which is also adopted by Real-Time
Communication in WEB-browsers (RTCWEB) as part of its security solution
[3, 8]. Another alternative is to employ the userspace IPsec implementation
available in the HIPL project.

The data plane security can also be offered by the lower-layer HIP if we
consider the interoperability between our library and normal HIP solutions.
When the library detects a HIT being used, it could resort to security as
offered by the lower-layer HIP solution. This way, the library can support
cross-layer optimization to minimize the processing costs of redundant secu-
rity.

7.2.2 Integrate HIPL Library to Existing Applications

Integrating the library to existing applications is the best way to demon-
strate the advantages of the library. Many applications have been discussed
as candidates for integration. The HIPL team at the Aalto university de-
cided to choose the rtorrent2 that is a bit-torrent client based on a terminal
interface. The integration experiences will also provide feedback for further
HIPL Library development.

7.2.3 Adaptive Handover Timer

As described in section 3.2.5.2, the library currently uses a static timer to
trigger the handover process. A better solution is to dynamically detect the
connectivity status according to certain properties such as the RTT of the
application data and then to create an adaptive timer, which can provide a
more accurate handover threshold for different network situations.

7.2.4 Inverse of Control (IoC)

In section 3.2, Inverse of Control (IoC) is proposed as a supplementary library
on top of HIPL Library which provides event-driven APIs. An IoC-based
solution provides a simpler higher level interface than the Sockets API. It can

1http://srtp.sourceforge.net/srtp.html
2http://libtorrent.rakshasa.no/
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also overcome some obstacles in the current library related to connectivity
change detection because event-driven style applications delegate right of
the control to the library, thus the library can schedule connectivity status
detection in a more convenient way.

7.2.5 Concurrent execution on the Library API

It is common for network applications to utilize the multi-process or multi-
thread strategy for the management of multiple transport layer sessions.
However, as a prototype, the library is not yet ready for a multi-process or
multi-thread environment. The library is built on top of the HIPL daemon
and reuses its code to expedites the development of the prototype. As the
HIPL daemon only requires a single daemon process, it is developed without
the consideration for multi-process or multi-thread. Inheriting from the dae-
mon implementation, the library also lacks concurrent protection. However,
excluding the code from the daemon implementation, the code of the library
itself are mostly ready for concurrent environment, except the re-entrance
protection for the HSOCK hash table. If a proper concurrent mechanism is
applied to the HIPL daemon and the HSOCK hash table in the future, the
development of application can have more alternative ways for the integration
of the library.

7.2.6 HIP RVS Incompatibility

The HIP RVS is an extension [26] to solve the mobility problem for two
simultaneously moving HIP hosts. This extension introduces an rendezvous
server to record HIT-to-IP mappings of a host and to relay HIP messages.
The design of RVS conflicts with HIPL Library in the case of TCP. First,
it does not support TCP. Second, another problem is that the responder
connects directly back to the initiator. For TCP, this means that the initiator
needs to have a listening socket to wait for another new connection from the
responder, which is not supported by the library. If the library runs in UDP
mode, the RVS support can be developed because UDP does not require a
new socket for a new connection.

7.2.7 Built-in NAT Support

The library header in the HIPL Library conforms to the standard HIP NAT
solutions which are described in Section 2.4. The library can provide a built-
in NAT solution which utilizes the same specifications.
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7.2.8 TCP User Timeout Option

The TCP user timeout option [14] is a specification to customize the timeout
limit for unacknowledged TCP data. The option can be used to prolong the
lifetime of a TCP session in the presence of unreliable, lossy networks. It can
also expedite the handling time of unacknowledged data by reducing the its
value. The timeout limit is negotiable and the option has to be supported
by both end-points. If the timeout is exceeded in a end-point, it will close
the connection. The user timeout option is available in Linux from kernel
2.6.373.

7.2.9 Library API Improvement

As mentioned in section 5.1, for the current library prototype, a wrapper ver-
sion of the select() function is missing and the hipl connect() lacks support
for non-blocking operations. This limitation forces applications to directly
operate on socket descriptors, which complicates the development of the ap-
plication. Therefore, the library should provide dedicate APIs for them and
hide implementation details from applications.

In addition, the library currently only provides two APIs for reading
and sending data which are hipl sendto() and hipl recvfrom(). To meet the
requirements of different use scenarios, the library should provide more al-
ternative APIs. For instance, it should offer hipl send() and hipl recv() for
TCP mode, and hipl sendmsg() and hipl recvmsg() for more general usage.
The latter two APIs can be built as the foundation of other data operation
APIs for better modularization.

7.2.10 Opportunistic Mode and Fallback Mode

Currently, the hipnetcat software can handle multiple server identities as
parameters and it tries all HIT to locator combinations of them to find a
suitable mapping to reach the server. However, the software cannot handle
the case that only locators are provided because the library does not support
opportunistic mode. If the library support this mode, the hipnetcat software
can be smarter and more flexible for input parameters.

In addition, as described in section 3.2.2, the library should support the
fallback mode, which allows it to support legacy cases and to improve its
deployability.

3Kernel 2.6.37 changelogs: http://kernelnewbies.org/Linux 2 6 37
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7.2.11 IPv6 Support

Currently, the library prototype only supports IPv4 and temporarily dis-
ables the access of IPv6-related functionality. When an application calls
hipl socket() with socket family AF INET6, the library returns error to pre-
vent the operation. The issue is caused by the code reused by our prototype
from the HIPL project. The IPv6 and IPv4 packet processing are slight
different in the HIPL, thereby causing incompatibility in the library imple-
mentation. If the issue is fixed in the HIPL project in the future, the library
should be able to support IPv6.



Chapter 8

Conclusion

HIP is a feature-rich protocol that supports security, mobility, IPv4 and IPv6
inter-operation, NAT traversal and other extensions. HIP requires a shim
layer that is logically located between the transport and network layers in
the networking stack. This thesis presents our contributions on two different
areas of HIP, HIPv2 and HIPv2.5.

HIPv2 is the next generation of HIP. It is under the standardization
process and mainly focuses on security improvements. The new version in-
troduces cryptographic agility, eliminates vulnerable security algorithms such
as SHA-1, and adds stronger algorithms such as Ellipse Curve DSA and El-
lipse Curve Diffie-Hellman. Our efforts on HIPv2 can be divided into two
parts.

First, we analyze the transition issues from version one to version two
and propose a dual-version solution. We identified a transition issue in the
way HIPv2 achieves cryptographic agility. Based on our feedback, the HIP
working group in the IETF agreed that the IPv6 prefix needs to be changed
in HIPv2. To support also version agility, we have extended HIP for Linux
implementation and our contribution has been adopted into the official source
code.

Then, we validate and implement the new cryptographic agility mecha-
nism for the HIPL project to support the standardization process of HIPv2.
The agility mechanism also includes a re-confirmation mechanism to prevent
down-grade attacks where a man-in-the-middle attacker can enforce weaker
key algorithms.

On the other hand, our novel research proposal for HIPv2.5 is not yet
included in the standardization process. HIPv2.5 is a library-based solution
that moves HIP on top of the transport layer and drastically differs from
current network-layer solutions. Compared to the network-based solutions,
a library-based solution operating at the application layer has a number of
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advantages: first, applications gain a direct control of HIP and can cus-
tomize according to their requirements; second, the stand-alone library does
not need any additional HIP software to be installed and does not require
administrative privileges.

The library prototype supports several features. It can demultiplex con-
trol and data plane within a single transport layer session. It buffers data
during handover to prevent TCP data loss and detects handovers automati-
cally based on undelivered data.

We demonstrate the library using two applications, the first one was
adopted to the official HIP for Linux software and its purpose is to facili-
tate system-level testing internally for the developers. The second one is a
simple client-server application that aids developers to integrate the library
into their own projects.

We hope the HIPv2.5 concept facilitates HIP deployment as it is easier to
adopt libraries into standard Linux distributions. The librarized HIP offers a
stand-alone platform to develop and customize HIP-aware applications. For
instance, the library can be used to realize public-keys based authentica-
tion, authorization and accounting for users and services. It also supports
application-layer mobility and multihoming to be used for disruption-free
multimedia streaming. NAT traversal is implementable and HIP offers a
convenient namespace to identify hosts securely in private address realms.
In the future, we believe the library could offer these features in unified and
bug-free implementation instead of application-specific hacks.
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tions for SSH and TLS. In Proceedings of the Annual Technical Confer-
ence on USENIX (2006), vol. 6.

[26] Laganier, J., and Eggert, L. Host Identity Protocol (HIP) Ren-
dezvous Extension. RFC 5204, Internet Engineering Task Force, Apr.
2008.

[27] M. Baugher, D. McGrew, M. N. E. C., and Norrman, K.
The Secure Real-time Transport Protocol (SRTP). RFC 3711, Internet
Engineering Task Force, Mar. 2004.

[28] M. Komu, T. Henderson, H. T. J. M., and A. Keranen, E.
Basic Host Identity Protocol (HIP) Extensions for Traversal of Network
Address Translators. RFC 5770, Internet Engineering Task Force, Apr.
2010.

[29] Maltz, D., and Bhagwat, P. MSOCKS: An architecture for trans-
port layer mobility. In INFOCOM’98. Seventeenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE (1998), vol. 3, IEEE, pp. 1037–1045.

[30] Moskowitz, R., and Nikander, P. Host Identity Protocol (HIP)
Architecture. RFC 4423, Internet Engineering Task Force, May 2006.

[31] Nikander, P., Ylitalo, J., and Wall, J. Integrating security,
mobility, and multi-homing in a HIP way. In Network and Distributed
Systems Security Symp. NDSS03 (2003).

[32] P. Jokela, R. M., and Nikander, P. Using the Encapsulating Se-
curity Payload (ESP) Transport Format with the Host Identity Protocol
(HIP). RFC 5202, Internet Engineering Task Force, Apr. 2008.

[33] P. Nikander, T. Henderson, E. C. V., and Arkko, J. End-Host
Mobility and Multihoming with the Host Identity Protocol. RFC 5206,
Internet Engineering Task Force, Apr. 2008.

[34] P. Nikander, J. L., and Dupont, F. An IPv6 Prefix for Over-
lay Routable Cryptographic Hash Identifiers (ORCHID). RFC 4843,
Internet Engineering Task Force, Apr. 2007.

[35] Paine, R. Beyond HIP: The End to Hacking As We Know It. Book-
Surge Publishing, 2009.



BIBLIOGRAPHY 68

[36] Pathak, A., Komu, M., and Gurtov, A. Host Identity Protocol
for Linux. In Linux Journal (Nov. 2009).

[37] Perkins, C. Mobile networking through mobile IP. Internet Comput-
ing, IEEE 2, 1 (1998), 58–69.

[38] R. Arends, R. Austein, M. L. D. M., and Rose, S. Resource
Records for the DNS Security Extensions. RFC 4034, Internet Engi-
neering Task Force, Mar. 2005.

[39] R. Mahy, P. M., and Rosenberg, J. Traversal Using Relays around
NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN). RFC 5766, Internet Engineering Task Force, Apr. 2010.

[40] R. Moskowitz, P. Nikander, P. J., and Henderson, T. Host
Identity Protocol. RFC 5201, Internet Engineering Task Force, Apr.
2008.

[41] R. Moskowitz, T. Heer, P. J., and Henderson, T. Host Identity
Protocol Version 2 (HIPv2). RFC-bis-08 5201, Internet Engineering
Task Force, Mar. 2012.

[42] Rescorla, E., and Modadugu, N. Datagram Transport Layer Se-
curity Version 1.2. RFC 6347, Internet Engineering Task Force, Jan.
2012.

[43] Rosenberg, J. Interactive Connectivity Establishment (ICE): A Pro-
tocol for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols. RFC 5245, Internet Engineering Task Force, Apr. 2010.

[44] Salz, J. TESLA: A transparent, extensible session-layer framework for
end-to-end network services. PhD thesis, Citeseer, 2002.

[45] Scharf, M., and Ford, A. MPTCP Application Interface Consider-
ations. Internet-draft, Internet Engineering Task Force, Feb. 2012.
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Appendix A

HIPL Library API

typedef uint16_t hipl_sock_id;

This hipl sock id type is used to identify a HIPL socket, similarly as with
socket file descriptors. For the locator parameter, the API employs a text
format instead of the binary-format sockaddr structure.

A.1 Initialize the Library

void hipl_lib_init(void)

This function initializes library related data structures. It must be called
before using any other function calls of the API.

A.2 Creating a Socket

hipl_sock_id hipl_socket(int domain, int type, int protocol)

• domain: IPv4 or IPv6

• type: SOCK STREAM or SOCK DGRAM

• protocol: TCP or UDP

A.3 Binding a Socket

int hipl_bind(hipl_sock_id hipl_socket,

char *address,

uint16_t port)
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A.4 Setting Up a Listening Socket

int hipl_listen(hipl_sock_id hipl_socket, int backlog)

A.5 Accepting a New Connection

hipl_sock_id hipl_accept(hipl_sock_id hipl_socket)

The call blocks by default until the TCP three-way handshake is completed.

A.6 Connecting to a Remote Server

int hipl_connect(hipl_sock_id hipl_socket,

char *address,

uint16_t port)

The call blocks by default until the connection is established.

A.7 Sending Data

int hipl_sendto(hipl_sock_id hipl_socket,

const void *data,

size_t size,

int flag,

char *address,

uint16_t port)

If the BEX is not established, the call triggers the BEX before sending out
the data. The call blocks and not support the select() function by default.

A.8 Receiving Data

int hipl_recvfrom(hipl_sock_id hipl_socket,

void *buffer,

size_t buffer_size,

int flag,

char *address,

uint16_t port)

If the BEX is not established, the call waits for the BEX before receiving
data. The call blocks and not support the select() function by default.
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A.9 Closing a Socket

int hipl_close(hipl_sock_id hipl_socket)

This call initiates shutdown procedures for both the control and data plane
to terminate them gracefully.



Appendix B

Hipnetcat

This chapter presents the synopsis of hipnetcat and description of each pa-
rameter. It also includes two examples to demonstrate the usage of the
software.

B.1 Usage

The usage of hipnetcat is as follows:

hipnetcat [-hlt] [-p source_port] [-s source_ip_address]

[-d dest_port] [server_identifier[s]]

• -h: Print usage of the hipnetcat

• -l : Switch the hipnetcat to server mode and wait for incoming connec-
tions. In this mode, the -d parameter and the peer identifier parame-
ter are disabled. If this option is not specified, the hipnetcat acts as a
client.

• -t : Turn on TCP transport. If this option is not specified, hipnetcat
runs on top of the UDP.

• -p: Hipnetcat should use the source port number as specified by the
source port parameter instead of an ephemeral port number.

• -s : Hipnetcat should use the source IP address as specified by the
source ip address parameter instead of a wildcard.

• -d : Hipnetcat running as a client should connect to the remote port
as specified by the dest port parameter. If this option is not given, the
hipnetcat uses port 10500 by default.
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• server identifier[s] : The IP, domain name and HIT are all valid iden-
tifiers for a server. Users can provide multiple identifiers for hipnetcat
and it will attempt all combination to reach the server. Hipnetcat
associates regular IP addresses as locators when a HIT is given.

B.2 Example Runs

We provide two example runs to demonstrate the usage of the hipnetcat, one
for TCP and one for UDP.

In the first example, the hipnetcat client is running on top of TCP
and connecting to the hipnetcat server. The server is listening the address
127.0.0.1 and port 22300, and the client is connecting from 127.0.0.1 port
22345 with HIT 2001:1c:809e:244a:c33:78fb:45e3:d132.

• At the server side:

hipnetcat -l -t -s 127.0.0.1 -p 22300

• At the client side:

hipnetcat -t -s 127.0.0.1 -p 22345 -d 22300 \

127.0.0.1 2001:1c:809e:244a:c33:78fb:45e3:d132

For the second example, both sides are running on the UDP mode and
the server is listening on port 22300 on wildcard IP address. The client side
uses an ephemeral local port to connect to the server.

• At the server side:

hipnetcat -l -p 22300

• At the client side:

hipnetcat -s 127.0.0.1 -d 22300 \

127.0.0.1 2001:1c:809e:244a:c33:78fb:45e3:d132
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