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Abstract—End-to-end encryption is becoming the norm for
many applications and services. While this improves privacy of
individuals and organizations, the phenomenon also raises new
kinds of challenges. For instance, with the increase of devices
using encryption, the volumes of outdated, exploitable encryption
software also increases. This may create some distrust amongst
the users against security unless its quality is enforced in some
ways. Unfortunately, deploying new mechanisms at the end-
points of the communication is challenging due to the sheer
volume of devices, and modifying the existing services may not be
feasible either. Hence, we propose a novel method for improving
the quality of the secure sessions in a centralized way based
on the SDN architecture. Instead of inspecting the encrypted
traffic, our approach enhances the quality of secure sessions by
analyzing the plaintext handshake messages exchanged between
a client and server. We exploit the fact that many of today’s
security protocols negotiate the security parameters such as the
protocol version, encryption algorithms or certificates in plaintext
in a protocol handshake before establishing a secure session.
By verifying the negotiated information in the handshake, our
solution can improve the security level of SSL/TLS sessions.
While the approach can be extended to many other protocols,
we focus on the SSL/TLS protocol in this paper because of
its wide-spread use. We present our implementation for the
OpenDaylight controller and evaluate its overhead to SSL/TLS
session establishment in terms of latency.

Index Terms—Software-Defined Networking, SSL/TLS, Cen-
tralized policy management, Handshake analysis, Flow verifica-
tion

I. INTRODUCTION

The general awareness of Internet privacy issues has been
on the rise not only for individuals but also for companies
and other organizations. For instance, the Internet Engineering
Task Force (IETF) has proposed encryption in HTTP/2 [1].
At the same time, due to the increasing number of hijacking
threats in plaintext protocols, some of the organizations are
already employing encryption as default in their web services
[2]. Thus, the trend of the near future appears to be that
an increasing fraction of the Internet communications is pro-
tected by end-to-end encryption. While providing privacy and
security, this will create challenges for middleboxes such as
firewalls, proxies and Deep Packet Inspection (DPI) devices.
Another potential downside is that mere encryption of traffic
cannot solve all cyber-security problems in the Internet, for
instance, ones related to misconfiguration and human errors.
In particular, users may accept weak algorithms or out-dated
and invalid credentials for their communication.

SSL/TLS [3] (hereon just referred to as TLS) might be
the most well-known example of today’s security protocols.
The TLS protocol is widely deployed in different network-
based software and services, for instance web browsers and
servers, email clients and servers, instant messengers and
teleconferencing applications in order to facilitate end-to-end
encrypted sessions. The security of the TLS protocol has
received close scrutiny, and the protocol and implementations
have been updated over the years to maintain a high level
of security. After detecting security vulnerabilities, the vul-
nerable versions or parameters have been obsoleted by the
standards body. However, not all of today’s communications
are initiated based on the latest versions of TLS. Indeed, a
considerable number of applications in today’s Internet employ
TLS sessions with weak security algorithms and outdated or
self-signed certificates [4], [5], [6]. These security credentials
are mostly verified at the end-points of the communication,
which increases the chance of human errors and prevents
implementing of a uniform security policy over all the initiated
TLS flows of a domain.

In this paper, we tackle these administrative challenges
surrounding security protocols with particular focus on TLS.
Our approach is inspired by the fact that security protocols,
such as TLS, negotiate their security parameters in a key
exchange or handshake protocol. The handshake phase occurs
at the beginning of the communication, and it allows two end-
points to agree on the credentials and parameters in order to
establish an encrypted session. While the encrypted application
payload cannot usually be inspected, the handshake occurs
in plaintext, which opens an opportunity for inspection and
verification by intermediary devices.

Our solution to verifying the TLS handshake protocol is
based on the centralized architecture of Software-Defined
Networking (SDN) [7]. In SDN, a logically centralized point
(controller) can inspect all traffic flows in the network and
enforce uniform policies over all flows. Since the data flows
in TLS are encrypted, the controller only checks the clear-text
credentials and parameters transmitted during the handshake
phase, but this is already enough to detect, e.g., outdated
certificates or protocol version numbers in the TLS handshake.
Violation of a policy can result in an alarm to the operator
or even in blocking of the TLS flow. After a successful
handshake, the controller allows the TLS client and server
to establish an end-to-end encrypted session.

We have implemented a prototype of our solution using
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Figure 1: System architecture

the OpenDaylight controller to verify TLS handshakes in real
time. The evaluation of our prototype shows that our approach
does not have a major impact on the latency of TLS session
establishment. While we implemented the prototype based on
the TLS protocol, our approach can also be deployed on other
protocols with an initial plain-text handshake such as DTLS
[8] or SSH [9]. Our solution can even be useful with the recent
version of TLS 1.3 [10].

The rest of the paper is organized as follows. Section II
explains the design of our solution. Section III describes the
details of flow verification of the TLS protocol and how
our approach can improve its security. Section IV explains
implementation details and Section V presents a performance
evaluation of the prototype. The results are discussed and
future work is presented in Section VI. Related work is
described in Section VII, and Section VIII concludes the paper.

II. DESIGN

This section explains the system architecture of our ap-
proach. We first discuss the different system components and
then describe how the components interact with each other.

A. Architectural Components

Figure 1 illustrates the different components of our system
architecture. The centralized controller implements network
services, provides northbound APIs for external applications
and configures and controls the network elements at the data
plane. The controller is able to program and control the
switches by installing, modifying and deleting forwarding
rules with southbound protocols.

Additionally, the controller includes a policy-box service
which is responsible for checking the handshake messages of
each protocol based on the policies defined by the network
administrator. For instance, this service can be used to check
the encryption algorithms and validity of certificates in the
TLS handshake process. The policy-box is, however, not
bound to a single protocol and can be extended to enforce
policies for many different protocols. Moreover, the policy-
box might be deployed as a third party service or it could
utilize external services for the flow verification process. For

instance, it could be connected to an external authenticator
or a Certification Authority (CA) to check the validity of the
session and the used credentials.

We have chosen OpenFlow as the southbound protocol in
our architecture due to its popularity. It allows the centralized
controller to have fine-grained control over network flows.
Furthermore, OpenFlow enables the switches to transmit the
initial packets of each flow to the controller (packet-in mes-
sages), and it allows the controller to forward the packets to
the switch (packet-out messages), or to install forwarding rules
for the new received flow requests (flow-mod messages).

As depicted in Figure 1, a set of OpenFlow-enabled switches
at the edge and core network forward the flows based on
prioritized forwarding rules installed in their flow tables.
The edge switches transmit the handshake messages to the
controller, which then instructs the switches at the edge and
core network on how to handle these flows. Furthermore, the
network includes a client, which initiates a request, and a
server that responds to the request from the client. Henceforth,
we simply refer to the TLS connection initiator end-point as
“client” and responding side as “server”.

B. Interaction of Components

The interaction of the components in the system architecture
is depicted in Figure 1. As shown in the figure, the switches
intercept handshake messages of each flow and inject them to
the controller. The SDN controller consults the policy-box to
match each packet with the local policies of the network. When
the policy-box accepts a handshake message, the controller
directly delivers the temporarily postponed message to the
destination, bypassing the switches in the network core. The
policy-box repeats the process for all handshake messages be-
tween the client and server until the handshake is successfully
verified. The controller then installs forwarding rules on all of
the switches along the path between the endpoints to accept
the flow. From this point on, the client and server communicate
directly without interventions from the controller.

Thus, the policy-box is able to verify and track the TLS
handshake messages from a centralized control point. While
this approach can be used for any protocol that starts with
an unencrypted initial handshake, we have targeted TLS
specifically because of its wide use in various networking
applications and services. In the next section, we explain in
detail how our solution can be used to increase the security
of TLS sessions.

III. TLS FLOW ANALYSIS

The TLS [3] protocol for secure communication consists
of two main parts: the Handshake and Record protocols. In
the handshake phase, the end-points negotiate a set of crypto-
graphic methods, primitives and keys. In the record phase, the
end-points protect their communication using the primitives
and keys negotiated during the handshake process. Since the
handshake defines the security parameters for the record layer,
i.e. for the actual data, it is important to ensure that this
negotiation does not use, e.g., weak encryption algorithms



or outdated certificates. Therefore, the recent RFC on TLS
[11] provides a list of recommendations, which are mostly
concerned with the structure and attributes of the handshake
to attain strong security. In the following, we discuss the
important attributes in the handshake messages and how our
solution can be used for verifying them.

Protocol Versions: The TLS protocol has been improved and
updated throughout the years in order to eliminate discovered
vulnerabilities. While the recommendations [11] suggest to use
the latest TLS version, it may not be supported yet by all of
today’s services. As a consequence, the servers usually are
backwards compatible and allow the clients to negotiate an
older versions of TLS. Unfortunately, an attacker may be able
to exploit this backwards compatibility and the vulnerabilities
of old protocol versions. Proposed countermeasures, which
are typically implemented in the TLS servers and clients,
include preventing downgrades to known vulnerable versions,
and verification of the parameters and algorithms to check
that the client is using the latest version of TLS. Our solution
moves this verification of the TLS handshake parameters to
a centralized controller. From there, the controller can verify
that the sessions only use TLS versions and algorithms allowed
by the network’s security policy. Exceptions to the policy can
also be added for legacy clients on per-host basis.

Cipher Suites: A cipher suite gives the combination of the key
exchange algorithm, encryption algorithm, message authen-
tication code (MAC) algorithm and pseudo-random function
(PRF) algorithm to be used. A secure session will be estab-
lished between the client and server based on the negotiated
algorithms in the chosen cipher suite. The client offers a set
of supported cipher suites to the server and server usually
selects the strongest one or the cipher suite for which it has
hardware acceleration. This means that the selection of cipher
suites depends on the algorithms supported by both of the end-
points. However, an attacker could tamper with the handshake
message and fool the other endpoint of the communication into
selecting a weak algorithm. This creates a vulnerable point
for the attacker to compromise the session and gain access to
the secure channel. To verify the selected algorithms at the
controller, our solution analyzes the handshake messages of
each flow and only allows the client and server to create secure
sessions using specific cipher suites defined in the policy.

Certificates: During the handshake phase, the client and server
can exchange certificates in order to identify and authenticate
each other. In web applications, it is common for only the
server to have a certificate, but in other applications, both
sides may have one. These certificates are typically issued
by third-party Certificate Authorities (CAs). While the end-
points are ultimately responsible of checking the validity
of certificates of a session, they can make mistakes. First,
users regularly override security controls in order to accept
invalid or expired certificates or ones that cannot be verified
against a revocation list [12]. In fact, a significant portion of
today’s servers use expired or self-signed certificates [5], [13].
Moreover, certificate chain validation is a complex process

and endpoint implementations have had subtle errors [14]. In
addition, even if today’s client applications may consider a
long list of trusted CAs, all CAs are not equally trustworthy
[15]. Therefore, organizations may consider a policy to accept
certificates from specific CAs, at least for internal communica-
tion. Our proposed solution can enforce centralized verification
of specific fields in each certificate, for instance the dates or
issuer of the certificate. Also, invalid certificate chains can be
rejected without leaving an option for the user or endpoint
software to override the controls.

Compression Methods: TLS compression methods can be
used during the handshake phase in order to decrease the
amount of payload data transferred in a TLS session. This
results in a reduction in the required bandwidth and latency
for transferring large amounts of data in TLS sessions [3].
However, based on the recommendations [11], this feature
introduces vulnerabilities and should be disabled. Since our
solution inspects the parameters exchanged in the handshake
protocol, it can be configured to block TLS sessions that try
to enable compression features.

Handshake Renegotiation: TLS renegotiation gives the client
the option to establish a new TLS session through an existing
secure channel. Based on the recent updates [16], the secure
renegotiation is enabled by including a specific cipher suite
or extension to the initial handshake protocol. Again, this
introduces the opportunity to detect and filter the sessions
that employ the renegotiation extension. With the central
control, the network administrator can prevent renegotiation
in the network completely or force the end-points to only
make secure renegotiation using the specified cipher suite and
extension.

IV. IMPLEMENTATION

We have implemented a prototype of the proposed approach
using the OpenDaylight controller (Hydrogen release). The
prototype consists of roughly 1000 lines of Java code. In this
section, we discuss the functionality of the implementation and
how it is deployed in order to verify TLS flows. Our prototype
enforces some of the TLS recommendations referred to in the
previous section, but is possible to extend it to check also other
attributes in the handshake.

The policy-box in our implementation is an OSGi [17]
bundle defined on the OpenDaylight controller. This module
is able to load the policies defined in a simple text file or it
can be extended to be configured using the REST APIs. For
each received TLS flow, the policy-box matches the defined
policy with the flow and subsequently, it accepts or rejects the
flow requests. Table I illustrates a sample policy definition for
a TLS flow in the policy-box.

The handshake protocol in TLS consists of several messages
which are exchanged between a client and server before
establishing a secure session. Figure 2 depicts the message
flow between the two end-points that passes through the
centralized controller. We have simplified the example in
Figure 2 by assuming that only two switches exist between



Client Server Egress Switch Ingress Switch 
Policy-box 
(Controller) 

Verify the 
Handshake 
Message 

Client Hello Client Hello Client Hello 

Server Hello, 
Certificate, 

Server Key Exchange, 
Server Hello Done 

Client Hello 

Server Hello, 
Certificate, 

Server Key Exchange, 
Server Hello Done 

Server Hello, 
Certificate, 

Server Key Exchange, 
Server Hello Done 

Server Hello, 
Certificate, 

Server Key Exchange, 
Server Hello Done 

Client Key Exchange, 
Change Cipher Spec, 

Finished 

Change Cipher Spec, 
Finished 

Flow-Mod Flow-Mod 

SSL Session Established 

Client Key Exchange, 
Change Cipher Spec, 

Finished 

Client Key Exchange, 
Change Cipher Spec, 

Finished 

Client Key Exchange, 
Change Cipher Spec, 

Finished 

Change Cipher Spec, 
Finished 

Change Cipher Spec, 
Finished Change Cipher Spec, 

Finished 

Figure 2: Flow diagram of SSL session establishment

the client and server. As it is depicted in the figure, the edge
switches forward all handshake messages to the controller for
checking credentials in these messages. When the handshake
is verified, the policy-box establishes a path between the
client and server by installing the forwarding rules (flow-
mod messages in the OpenFlow protocol) to the switches.
After this, the session continues directly between the switches
without further intervention from the controller.

Algorithm 1 describes the program logic of our prototype
for verifying TLS flows. The policy-box creates a new ses-
sion and tracks the session until the client and server have
exchanged all the relevant handshake messages. The prototype
checks only certain values in the handshake messages in order
to optimize the performance of the prototype. It searches for
the location of certain TLS parameters and matches their
values with the policy of the network.

To start establishing a secure session, the client sends a
Client Hello message, and the server responds with a Server
Hello message. The Client and Server Hello messages deter-
mine the supported TLS version, the list of supported cipher
suites, extensions and compression algorithms. As explained
in the previous section, negotiating vulnerable values for any
of these parameters may allow attackers to exploit the vulner-
abilities in the TLS protocol and compromise the session.

Certificates are another important piece of information
transmitted between the end-points. The server sends its
certificate chain to the client so the client is able to verify
the identity of the server. Optionally, the server might ask
the client to send its certificate chain. As already explained,

the certificates used in the handshake can be expired or
otherwise untrustworthy. Our prototype verifies the issuer of
the certificates and validates the certificates based on the date
of issue and expiry.

The end-points exchange other handshake messages such
as Server Hello Done, Server Key Exchange and Client Key
Exchange without major inspection from the policy-box. After
receiving the Change Cipher Spec and Finished message from
the server, the policy-box installs forwarding rules on the
switches in order to establish a direct path between the client
and server.

For each established session, the controller is able to decide
an idle time-out which is embedded in the forwarding rules on
the switches. If the session is inactive for this period of time,
then the flow will be removed from the switches. The value
of the idle timeout for the flow tables can be set according to
the TLS session idle timeout at the server side or it can be
configured based on the network policy.

V. EVALUATION

One of the main concerns in our solution is the increased
latency in establishing TLS sessions. Since the SDN controller
verifies the handshake in our approach, it is important to
measure the overhead in establishing TLS sessions. Thus, we
focus here on evaluating our approach in terms of latency.
More precisely, we generate HTTPS traffic between a client
and server and measure the impact of our solution on the time
it takes to establish a TLS session.

The test network for the evaluation includes client and
server hosts which are connected to each other using Open-



Algorithm 1: TLS flow verification logic
1 sessionssl ← sessionDB.get(pktssl);
2 if sessionssl is null then
3 create session(pktssl);

4 if pktssl is verified session then
5 install forwarding rules(pktssl);
6 return;

7 if pktssl includes Client Hello then
8 verify version(pktssl.version);
9 veriy cipher suites(pktssl.ciphers);

10 verify renegotiation info(pktssl.reneg);
11 verify compression algorithms(pktssl.comp);
12 update session(sessionssl, client-hello);
13 else if pktssl includes Server Hello then
14 verify selected cipher suite(pktssl.cipher);
15 update session(sessionssl, server-hello);
16 else if pktssl includes Certificate then
17 validitate certificates(pktssl.certificates);
18 update session(sessionssl, certificates);
19 else if pktssl includes Server Hello Done or Server

Key Exchange or Client Key Exchange then
20 update session(sessionssl, server-hello-done /

server-key-exch / client-key-exch);
21 else if pktssl includes Change Cipher Spec and

Finished then
22 update session(sessionssl, change-cipher-spec,

finished);
23 install forwarding rules(pktssl);

Table I: Sample policy definition in policy-box

1 {
2 "TLS Flow Attributes": {
3 "version": "TLS 1.2",
4 "cipher suites": [
5 {TLS_DHE_RSA_WITH_AES_128_GCM_SHA256},
6 {TLS_DHE_RSA_WITH_AES_256_GCM_SHA384}
7 ],
8 "certificate issuers": [
9 {DiGiCert}, {VeriSign}, {Symantec}

10 ],
11 "compression": "disabled",
12 "secure renegotiation": "enabled"
13 }
14 }

vSwitch v2.0.2. The network is emulated using Mininet v2.1.0
[18] on a machine running Ubuntu 14.04 and equipped with
Core i7 Quad Core 2.80 GHz CPU and 8G RAM. We run the
prototype on the OpenDaylight controller (Hydrogen Release)
using a separate machine installed with Ubuntu 12.04 and
equipped with Intel Core i5 Quad Core 2.67 GHz CPU and
4G RAM. The two hosts are connected directly to each other
using gigabit Ethernet ports.

Moreover, we have defined a custom policy in our prototype
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to accept TLS 1.2 with five acceptable cipher suites and ten
recognized issuers of certificates.

We consider three different use cases and measure and
compare the latency in each case. In the first case, we measure
the time it takes to establish a TLS session between a client
and server without any SDN controller. In this case, all flows
are installed pro-actively and the controller does not check any
information in the TLS session. The second case is the legacy,
reactive SDN approach in which the switch sends the first
packet of a flow (packet-in message in the OpenFlow protocol)
to the controller, which then installs forwarding rules between
the client and server. In this case, the controller establishes the
forwarding path by transmitting only the packet-in messages.
The third case is our proposed solution, in which the switch
forwards handshake messages to the controller for inspection
in the policy-box.



For testing the latency of establishing TLS sessions, we
benchmark our prototype by initiating HTTPS requests from
the client to the server. Our benchmarking tool is httping v1.5.8
[19], which establishes a TLS session with the server and
measures the time needed for initiating the session. We repeat
our measurement 200 times in order to increase the accuracy of
the results. The results of the measurements are depicted in a
CDF graph in Figure 3. As expected, the first legacy approach
is the fastest and our approach is the slowest. However, the
difference in the mean value between the lowest and highest
latency is less than 10 ms. Comparing our approach with the
second approach (which is based on transmitting the packet-
in messages), we observe that the difference in latency is less
than 8 ms.

Since httping shows the time for a single TLS connection,
it cannot show the latency of establishing concurrent TLS
sessions. Many of today’s web servers may receive several
concurrent TLS connections. Therefore, we extend our eval-
uation to measure the latency of establishing concurrent TLS
sessions. We use AB Apache [20] to send connection requests
in four concurrency levels (10, 20, 30 and 40 simultaneous
clients), between a client and web server. For each concurrency
level, AB sends 100 requests to increase accuracy of our
measurements (i.e for 40 concurrent connections we send
4000 requests). Figure 4 shows the mean values and standard
error for the different numbers of concurrent TLS connections.
As the concurrency increases, the mean time for establishing
TLS sessions increases, as does the variation. The highest
latency and standard error occurs in the case 40 concurrent
connections. In this case, the mean value of latency for the
first legacy approach is about 125 ms. The second approach
increases the latency with about 24% when compared to the
first case. Our approach further increases the latency with
around 16% when compared to the second case.

VI. DISCUSSION AND FUTURE WORK

Our solution can be seen as a centralized method for
enhancing the security of communication flows. In this paper,
we have focused on TLS as an example protocol. Based
on the SDN paradigm and the OpenFlow protocol, we have
developed a module to verify all initiated TLS flows from
a centralized control point. Unlike today’s solutions such
as SSL proxy [21], our approach does not break the TLS
sessions. In fact, by offloading only the handshake messages
to the centralized controller, we have increased the security of
establishing sessions while retaining the efficiency of end-to-
end encryption between a client and server.

Our approach increases the latency compared to the native
reactive SDN approach in which only the packet-in messages
are transmitted through the controller. While this level of
latency is acceptable for initiating TLS sessions, most of the
delay consists of transmitting several messages through the
centralized controller and processing the messages based on
the defined policy. The delay can be somewhat mitigated
by the TLS resumption feature [3], [22], which reduces the
number of handshake messages. TLS resumption provides the

possibility to resume previously initiated sessions with just a
short handshake. This means, the clients need to initiate the
complete TLS handshake for the first time and for subsequent
requests, they can rely on the TLS resumption feature to de-
crease the latency of re-establishing TLS sessions. This feature
is useful especially in cases where the client resumes a session
after a server timeout or when it connects with the same data
flow from a different location and IP address. Furthermore,
the policy-box can utilize additional special purpose hardware
for performing heavy crypto functions in order to minimize
the processing delay.

The centralized control point increases the manageability of
the network and makes it possible to define uniform policies
for all TLS flows in the network. However, a large number
of initiated flows might overflow a centralized controller.
Considering that the controller is responsible for all of the
functions in the SDN architecture, the controller may hit
its performance limits sooner than expected. Inspired by
Casado et al [23], we propose to separate the control plane
to edge and fabric controllers in order to support different
services and functionalities: the edge controller analyzes the
handshake messages and verifies the sessions, whereas the
fabric controller is responsible for other tasks such as routing
and load balancing at the core network. Another solution
to decreasing the load on the controller is the clustering
approach [24]. Clustering makes it possible to spread the
control traffic to several logically-centralized controllers. The
OpenDaylight controller supports this feature, and our solution
can be deployed in the clustering mode.

Another thing to consider is that today’s OpenFlow-enabled
hardware switches are limited with regards to storing large
numbers of concurrent forwarding rules [25], which can affect
our solution since our design is based on filtering the traffic
at the edge switches. This issue can be mitigated by consid-
ering software switches at the edge of the network. Today’s
software-based switches are able to store a large number of
forwarding rules [26].

The proposed solution is effective in terms of preventing
many of today’s network attacks. POODLE [27], BEAST [27]
and FREAK [27] are examples of well-known attacks which
are mainly mounted using the vulnerabilities of old and weak
cipher suites in the TLS protocol. In these types of attacks,
the attacker is placed in the middle of the communication
channel in order to break the encrypted session by exploiting
vulnerabilities in weak encryption algorithms. Our approach
can prevent these attacks by forcing the client and server to
choose the latest TLS versions and by only allowing strong
cipher suites. Other examples of today’s network attacks are
CRIME [27], TIME [27] and BREACH [27], in which the
attacker exploits the compression feature in TLS in order to
hijack the TLS sessions by recovering the session information
in the web cookies. However, we can prevent these attacks
disallowing the client and server to establish TLS sessions
with compression methods.

One of the security objectives of the currently worked
on TLS v1.3 [10] is to extend encryption to the handshake



protocol itself and also the exchange of session credentials.
However, our solution is still useful for long into the future
because many applications will continue to communicate using
older versions of TLS, and our approach gives a possibility to
work with different versions of TLS. Moreover, as already
argued, despite the fact that the current implementation only
supports the TLS protocol, the principle is not limited to
the TLS and can be extended to support other protocols.
In fact, this approach can be used with any protocol that
is established with an initial handshake phase with some
parameters exchanged in plaintext. One example of a security
protocol that can be verified with our architecture is DTLS
[8]. Similar to TLS, the DTLS protocol is established with
a plaintext handshake protocol. SSH [9] is another example
which starts with a negotiation of the encryption algorithms
and cipher suites.

Another case where the approach of this paper could be
applied is the Host Identity Protocol (HIP) [28]. HIP can be
used as a Virtual Private Network (VPN) solution that operates
end to end between two hosts. Unlike many other VPNs,
the control protocol of HIP is just integrity-protected with
asymmetric keys, which means that middleboxes can inspect
most of the control traffic. The control protocol authenticates
the two communicating end-hosts using their public keys and
optionally with certificates, and negotiates cipher suites and
keys for IPsec, which means that our approach could be
used to analyze various parameters similarly to the TLS case.
Furthermore, in HIP, both the client and the server always
communicate their public keys, and these could be used to
authenticate both of the end-hosts in order to implement
a HIP-based (distributed) firewall functionality at existing
middleboxes, rather than building and deploying new devices
implementing HIP firewall functionality [29].

Additionally, our approach can also be integrated with ap-
plication layer protocols such as the Session Initiation Protocol
(SIP) [30]. With SIP, two end-points exchange signaling mes-
sages in order to establish a media session. These messages
include the credentials of the end-points and the media formats
for the new session. The policy-box in our architecture can
verify the end-point credentials and the media formats for
establishing the media session.

Finally, the central view and control over session parameters
means that the system administrators can be notified about
potential weaknesses in the observed end-host behavior even
if the sessions are not outright blocked. Our solution introduces
a higher level of flexibility by enabling the administrators to
enforce polices over specific flow requests (e.g. TLS flows)
while allowing them to implement other network functions on
the rest of the traffic.

VII. RELATED WORK

To the best of our knowledge, the solution proposed in this
paper is unique in a sense that it enhances the security of data
flows by analyzing the handshake messages in a centralized
SDN controller. However, there are other efforts which have
used an SDN controller for verifying various aspects of data

flows using the packet-in messages in the OpenFlow protocol.
Also, some non-SDN solutions discuss enhancing the TLS
flows by verifying the flows in communication networks. In
the following, we discuss each group of these works.

SDN firewall solutions: Typically, in these solutions, the first
packet of each flow is forwarded to the controller and the
controller is responsible of enforcing the pre-defined ACLs
on the flows and forwarding the packets through the network.
Following this approach, a firewall application has been im-
plemented using the Floodlight controller [31].

Wang et al. [32] have proposed a firewall application to
solve the so-called bypass threats in networks by tracking
the flows. Their solution detects and resolves conflicting fire-
wall rules based on header-space analysis algorithms. FLOW-
GUARD [33] is a recent solution that both verifies flows using
dynamic policies and detects conflicting rules and security
violations. FLOWGUARD verifies the flows centrally at the
controller based on the defined policies and also tracks the
verified flows in the network, so that it can dynamically react
to policy and network-state updates. For isolation and tracking
of flows, FLOWGUARD checks the source and destination
address of each packet in a flow. Based on the addresses, it
creates a flow path space for routing a flow in the network.

TLS flow enhancements: Enrique et al. [34] proposed a dis-
tributed solution to mitigate man-in-the-middle attacks by
verifying TLS certificates using Bayesian networks. The SDN
controller is used in this solution to reroute and forward sus-
picious TLS flow requests to a quarantined network. However,
this solution does not verify other important parameters of the
handshake protocol.

Another well-known solution which can be used for TLS
flow verification is Snort [35]. Snort is able to track the flows
and set the rules in order to allow certain TLS versions and
TLS flow states in the network. Our solution is comparable
to the Snort with the advantage of enforcing the network-
wide policies from a centralized and consistent control point.
Authors in [36], [37], [38] discussed other approaches to
verifying the TLS protocol implementation at the end-points
in order to enhance the security of TLS flows. However, these
solutions lack a centralized network-view to be able to manage
and verify all initiated flows in the network.

VIII. CONCLUSION

In this paper, we proposed a centralized solution based
on the SDN architecture to enhance the security of com-
munication sessions. We focused especially on the widely
adopted TLS protocol, in which we observed the plaintext
parameters in the handshake protocol in order to monitor
and enforce security of the session establishment. In our
solution, a centralized controller analyzes the parameters of
a TLS handshake, such as protocol version, cipher suites
and certificates, and allows the client and server to establish
an end-to-end encrypted session with each other but only
if the network’s security policy is followed. That is, we
enhanced the security of establishing sessions by only allowing



the communication end-points to initiate a secure session
with known strong encryption algorithms and valid security
credentials. This approach enables us to enforce network-wide
security policies and to manage all secure connections from a
centralized control point.

We have developed a prototype of the proposed solution
based on the OpenDaylight SDN controller. Our experiments
showed that the TLS handshake analysis introduces roughly
16% overhead in verifying 40 concurrent HTTPS connections
when compared to a more traditional SDN-based approach.
We argue that this overhead is justified by the benefits of
the central control over policy compliance. Our approach can
improve the overall security by preventing several well-known
attacks on the TLS protocol, and it can be extended to support
other protocols and applications.
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