
SynAPTIC: Secure And Persistent connecTIvity for Containers

Alireza Ranjbar∗†, Miika Komu∗, Patrik Salmela∗, Tuomas Aura†
∗Ericsson Research, Finland †Aalto University, Finland

{alireza.ranjbar, miika.komu, patrik.salmela}@ericsson.com, tuomas.aura@aalto.fi

Abstract—Cloud virtualization technology is shifting towards
light-weight containers, which provide isolated environments
for running cloud-based services. The emerging trends such as
container-based micro-service architectures and hybrid cloud
deployments result in increased traffic volumes between the
micro-services, mobility of the communication endpoints, and
some of the communication taking place over untrusted net-
works. Yet, the services are typically designed with the as-
sumption of scalable, persistent and secure connectivity. In this
paper, we present the SynAPTIC architecture, which enables
secure and persistent connectivity between mobile containers,
especially in the hybrid cloud and in multi-tenant cloud net-
works. The solution is based on the standardized Host Identity
Protocol (HIP) that tenants can deploy on top of existing cloud
infrastructure independently of their cloud provider. Optional
cloud-provider extensions based on Software-Defined Network-
ing (SDN) further optimize the networking architecture. Our
qualitative and quantitative evaluation shows that SynAPTIC
performs better than some of the existing solutions.

Index Terms—containers, docker, security, HIP, SDN, mobility

1. Introduction

Cloud virtualization has been dominated by hypervisor-
based virtual machines (VMs) to offer secure and inexpen-
sive services. However, during the recent years, container
technology has been catching up by offering more agile
and lightweight services with higher visibility to users and
application developers. In general, containers are leaner than
virtual machines, and more dense deployments of containers
are possible per host machine. Since the containers share the
system resources of the host, they introduce new communi-
cation and security challenges when deployed in large cloud
networks. Despite all the attempts to boost the deployment
of containers in cloud networks, the connectivity between
containers is still at the early stage of development and
several challenges remain to be solved.

Containers change the way applications are developed,
and these changes highlight the importance of container
networking. Applications are gradually moving from mono-
lithic to microservice architectures in which a single appli-
cation is split into several smaller services. This develop-
ment goes hand in hand with the deployment of containers,
which provide suitable isolated and light-weight execution
environments. However, these changes in the application

architecture can increase the traffic volumes due to the chatty
communications between the microservices, which has the
risk of reducing the overall service performance [8], [27].

A service implemented by a container can be accessed
externally based on Network Address Translation (NAT)
techniques which may lead to several networking issues such
as port collisions and overlapping private address realms.
These problems are aggravated by the fact that containers
are sometimes deployed inside virtual machines and the
hypervisor may introduce yet another NAT layer. The cloud
provider can, of course, implement various overlay mecha-
nisms to interconnect containers even in nested NAT topolo-
gies, and also provide container migration support across
the network boundaries. However, solving these problems
manually requires extra configuration and administrative
overhead.

In hybrid cloud solutions, the tenant has its own private
cloud infrastructure and it may employ the public cloud
only to manage peak loads. Furthermore, the tenant may
wish to move its workloads between different cloud vendors.
Thus, containers need to move between different cloud
infrastructures, and the mechanism for interconnecting con-
tainers should be independent of the cloud service provider.
To avoid vendor lock-in, the solutions for such inter-cloud
connectivity should be primarily managed by the tenant, and
they should be based on standard protocols.

The inter-cloud connectivity highlights the need for NAT
and firewall traversal support in the containers, and the
need for secure end-to-end connectivity. Data plane security,
such as domain isolation and access control, provided by
the cloud vendor is also not sufficient when the containers
communicate with each other across domain boundaries and
over the Internet. Thus, the inter-container communication
should be secured end-to-end to protect the data flows, e.g.,
between microservices [4].

Our Contribution. In this paper, we propose SynAP-
TIC, a solution to provide secure and persistent connectivity
for containers. SynAPTIC uses the Host Identity Protocol
(HIP) [24] to meet the challenges in connecting containers.
HIP is a standardized mobility and security protocol that
separates identity from location and provides unique identi-
fiers for end-hosts. A host identifier in HIP is derived from a
cryptographic public key that enables strong authentication.
HIP supports NAT traversal and end-host mobility in both
IPv4 and IPv6 networks, and HIP secures network connec-
tivity with IPsec. As our first contribution, we integrate HIP
in Docker containers and design an architecture that can in

practice be deployed on containers without any changes in
networking infrastructure. In addition, to ensure compati-
bility with the latest networking technologies, SynAPTIC
supports the use of Software Defined Networking (SDN),
which is being integrated in networking stacks of some
of the well-known container solutions [11], [12]. In our
SDN-based approach, the network infrastructure facilitates
centralized access control based on the public-key identifiers
of the containers. Also, the SDN controller assists in routing
the data flows and updating the existing forwarding paths in
case of container mobility.

The rest of the paper is structured as follows. Sec-
tion 2 explains the state-of-the-art solutions. We introduce
SynAPTIC architecture on traditional and SDN based cloud
networks in Section 3. We evaluate our solution in Section
4. Section 5 compares SynAPTIC with some of the exist-
ing solutions and describes possible future improvements.
Finally, Section 6 concludes the paper.

2. Related Work

In this section, at first, we review some of the cloud
networking protocols and then we discuss the existing con-
tainer solutions. Lastly, we explain the recent inter-container
networking approaches based on SDN.
Networking protocols: To provide logical isolation be-
tween tenants in a cloud network, Virtual Extensible Local
Area Network (VXLAN) [23] has been developed which
creates a layer-2 overlay network on top of layer-3 network.
A set of other protocols such as Virtual Private Network
(VPN) [18] aim to enhance security of data flows by uti-
lizing IPSec or SSL and by creating secure connectivity
between private and public clouds routed through untrusted
networks. Furthermore, a set of protocols such as Locator/ID
Separation Protocol (LISP) [17] have been developed to sep-
arate the identity of end-hosts from their network location.

Host Identity Protocol (HIP) [25] collects a number
of features from other protocols within a single protocol.
HIP separates the end-host’s identity from its location and
provides cryptographic authentication and Denial of Service
(DoS) protection and encryption for application payloads,
and supports end-host mobility in communication networks.
Also, HIP supports heterogeneous addressing, and it can
traverse through NATted networks.
Container connectivity: By default, Docker [2] connects
containers through a bridged interface. Also, tenants can
use VXLAN and SSL/TLS to create logically isolated and
secure networks and connect containers that are placed in
different host machines. Weave [14] allows Docker contain-
ers to communicate with each other through a set of so
called peer routers in a mesh-like topology. Weave is able
to forward the data flows through the fast path based on
VXLAN tunnels and it is able to encrypt the control and data
flows between weave routers. The project Calico [1] does
not employ any overlay network but instead, it provides a
direct path by configuring the Linux IP tables. Also, Calico
installs a BGP client on host machines to distribute routing

information through a data center. Kubernetes from Google
[6] places containers in so called Pods, each of which has
a unique IP address. Kubernetes enables the containers in
the same pod to communicate with each other through the
“localhost”.

Linux Containers (LXC) [7] is an alternative implemen-
tation for containers. Similarly as in docker, LXC containers
running on the same host are connected via a shared bridge
interface. FlockPort [5] allows two LXC containers behind
a NATted network to establish secure communication chan-
nels based on IPSec VPN tunnels.
Software-Defined Networking: SDN and overlay tech-
nologies such as VXLAN have been widely used for net-
working between VMs [22] and recently some solutions
have applied SDN to enhance network portability and pro-
vide seamless connectivity between containers. OpenCon-
trail [11] and Pertino [12] are examples that benefit from
centralized SDN architecture and overlay networks in order
to provide network connectivity in a container-based cloud.
Kim et al. [21] employ SDN as a solution for flexible
address rewriting in container-based cloud networks. Nak-
agawa et al. [26] use a centralized controller to distribute
logical end-point configurations to physical switches in or-
der to connect Linux containers.

3. Connectivity Architecture for Containers

In this section, we explain our container connectivity
solution in detail. First, we explain how HIP can be deployed
on existing (non-SDN and non-HIP-aware) cloud infras-
tructure. Then, we describe a HIP-aware software-defined
networking solution.

3.1. Solution for Today’s Cloud Networks

To begin with, we review the structure of HIP protocol
for inter-container communications. HIP adds a new name
space between the transport and network layer and separates
the identity of end-hosts from their location. While contain-
ers use the IP addresses as location identifiers, HIP assigns
Host Identities (HI) based on public keys for identifying the
end-hosts. This HI value is self-certifying by its nature, and
it can be used to uniquely and securely identify an end-
host in a cloud network. However, as public keys can be of
varying size, they are difficult to employ as surrogate virtual
addresses in existing network applications, and therefore,
HIP specifications define fixed-sized identifiers. For IPv6-
based applications, HIP generates a hash of the HI which is
referred as the Host Identity Tag (HIT). A HIT is the same
size as an IPv6 address (128 bits), so it can be utilized
by IPv6-capable applications running in the containers, and
for compact source and destination identification in HIP
headers. For IPv4-based applications, HIP provides a Local
Scope Identifier (LSI), which is essentially a private address
that HIP translates locally into a HIT before transmission on
the wire.

Figure 1 illustrates the base exchange process which
is based on a 4-way handshake including I1, R1, I2 and

R2 messages between the initiator and responser. During
the base exchange operation, the initiator and responder
negotiate and agree on algorithms and keys for establishing
end-to-end IPSec tunnels. The base exchange also authen-
ticates the two end-hosts to each other because both end-
hosts exchange their HIs during the key exchange and sign
the packets using their private keys. In order to protect the
responder from DDoS attacks, during the base exchange pro-
cess, the responder sends a stateless, computational puzzle
with a specific difficulty level to the initiator to solve in the
beginning of the base exchange. After successful completion
of the base exchange, the two end-hosts have to set-up a
secure IPsec tunnel to encrypt the application data.

As it is depicted in Figure 1, when either the initiator or
responder changes its location, it informs the other side of
the communication about its new location by exchanging 3-
way update messages. After the base exchange and possibly
some update exchanges, the end-hosts can terminate the
control and data plane using the closing procedure [24].

In SynAPTIC architecture, we employ HIP for Linux
(HIPL) [3] implementation to integrate the HIP protocol in
Docker containers. In the HIPL implementation architecture,
a software component called HIP daemon is responsible of
IPsec key and mobility management. In other words, it is
responsible of the HIP control plane which set-ups IPsec
tunnels between two end-hosts and updates the tunnel during
end-host movement. The HIP daemon runs on each of the
containers and, on the first boot-up, it generates private-
public key pair, which represents the Host Identity (HI)
of the container. To communicate over a HIP-based tunnel,
applications have to use LSIs or HITs in their socket calls
as local and remote addresses. It is worth noting that one
end can utilize LSIs and the other HITs because the former
is always locally translated into the latter. The daemon
associates these two virtual addresses representing the HI
of the local host with a virtual interface.

A HIP capable firewall [20] can be used to control and
restrict communication between HIP-enabled containers. A
migrating container can update its locators to the DNS, so
that other containers can reach the migrated container. For
rapidly moving hosts, extra immobile infrastructure, HIP

Initiator Container
(HIP Daemon)

Responder Container
(HIP Daemon)

R1

I2

R2

IPsec Tunnel

Base
Exchange

I1

HIP Firewall HIP Firewall

HIP Firewall

Update

Update + Address Verify Req.

Update (ack) + Address Verify Res.

HIP Firewall

IPsec Tunnel

Update
Mechanism

Figure 1: Flow diagram of HIP Base Exchange

Infrastructure
Network

HIT/LSI

Host machine

Container
(HIP Daemon)

SDN Controller

Forwarding
mechanism Authentication

Policy

REST APIs

Access Control

Edge Switch

Cloud
Management

OpenFlow

HIT/LSI

Host machine

Container
(HIP Daemon)

Edge Switch

Figure 2: Container networking with SDN and HIP

rendezvous server [25], can be utilized. Also, it is possible to
deploy HIP Relay [20] to connect containers behind NATted
networks.

3.2. Supporting Container Connectivity with SDN

An increasing number of cloud providers are adopting
SDN to provide higher level of control and flexibility in the
infrastructure network. Therefore, in the remainder of this
section, we extend our solution by proposing a SDN-based
architecture for deploying SynAPTIC in cloud networks.
Authentication: An SDN controller is responsible for regis-
tering and authenticating new containers. While it is possible
to verify containers by passively observing the signatures
exchanged during the HIP base exchange, such a solution
is vulnerable to replay attacks. We adopt the challenge-
response approach from Heer et al. [19] where middle-
boxes add a standard computational HIP puzzle into the
base exchange messages in order to authenticate the end-
points of the communication and to protect against replay
attacks. However, instead of middle-boxes, we use the SDN
controller for authenticating end-points from a centralized
point by appending puzzles to the base exchange messages.
Access control: In our architecture, firewall and access
control mechanisms are centralized with SDN. Unlike some
of the existing solutions which mainly enforce policy based
on network identifiers (i.e. IP address), access control in our
solution is based on public keys (HIT values) which has
an advantage of enforcing global policy on inter-container
connectivity in a location-independent way.
Forwarding mechanism: The SDN controller forwards the
traffic in the network by installing OpenFlow forwarding
rules, and it reacts quickly in case of changes in the network
topology, e.g., in case of relocation of containers.

Figure 2 illustrates the SDN-based architecture for de-
ploying SynAPTIC. In this architecture, the controller must
be able to control the (virtual) edge switches connected to
the containers and the edge switches should support the
OpenFlow protocol. When an application in a container
initiates a HIP flow, the corresponding edge switch captures
the base exchange packets and forwards them to the SDN

controller (packet-in messages in the OpenFlow protocol).
The SDN controller processes the HIP packets according
to their type and instructs the edge switches to forward or
drop the flow. Figure 3 shows the steps for handling a base
exchange in the SDN controller which will be elaborated
next.

Initiator Container
(HIP Daemon)

Responder Container
(HIP Daemon)

IPsec Tunnel

Edge Switch
(SW1)

Edge Switch
(SW2)

SDN Controller

I1 I1

R1R1 + PI

SignI{I2 + PI + S} SignI{I2 + PI + S} + PR

SignR{R2 + PR + S}SignR{R2 + PR + S}

Flow-mod Flow-mod

Figure 3: HIP base exchange through the SDN controller

I1 Packet: Upon receiving an I1 packet, the SDN controller
verifies the source and destination HITs in the packet header
based on the policies defined by the corresponding tenant.
After policy verification, the controller stores the state of
HIP tunnel and forwards the I1 packet to the responder.
R1 Packet: After receiving the R1 packet from the respon-
der, the controller records the public key of the responder,
appends the puzzle to the R1 packet and forwards the packet
to the initiator. The puzzle is generated using one-way SHA-
1 hash algorithm.
I2 Packet: The initiator solves the included puzzle using a
brute-force process, appends the solution to the I2 packet,
signs the packet with its own private key and sends the
signed packet. The controller receives the I2 packet and
verifies the identity of the initiator by checking the public
key and signature. The controller also verifies the solution
from the initiator. In case of successful verification, the
controller adds a new puzzle to the I2 packet to authenticate
the responder and forwards the I2 packet to the responder.
R2 Packet: The responder solves the puzzle from the con-
troller, appends the solution to the R2 packet, and signs the
packet and sends the packet to the initiator. The controller
receives the packet and verifies the solution and signature of
the responder and if they are valid, the controller forwards
the R2 packet to the initiator and instructs the edge switches
by installing OpenFlow rules to allow a direct IPSec tunnel
between the initiator and responder.
Update Packets: If the controller receives HIP update mes-
sages for any container, it associates the update packets with
the previous HIP base exchange and verifies the signatures.
After the update procedure is successfully completed, the
controller updates forwarding rules at the data plane to allow
a direct IPSec tunnel from the new location.

Two connected containers may execute the HIP closing
procedure in order to terminate an established HIP associa-
tion. Since the controller cannot differentiate the encrypted
IPSec packets and Close messages, we use idle timeout and

hard timeout values in OpenFlow rules to remove inactive
IPSec tunnels.

We have implemented a prototype on ONOS [15] which
offers a distributed, multi-instance SDN controller. In our
prototype, tenants are able to set policy through REST APIs
and ONOS stores the policy in a shared data store from
which all instances are able to independently match the
received requests with the associated policy. Similarly, after
verifying any new HIP base exchange, the information about
the new HIP association is stored in a distributed store so
that each ONOS instance has an updated view of all HIP
associations in the network. The total lines of the prototype
is about 3000 lines of JAVA code running on ONOS 1.5
(Falcon version), and it is based on OpenFlow 1.3 (but can
also support other versions of OpenFlow).

4. Evaluation

In this section, we evaluate the performance of SynAP-
TIC to establish inter-container connectivity and we com-
pare it with Weave. We also test the functionality of SynAP-
TIC to preserve established sessions in case of container
migration.

Our test network consists of two VirtualBox 4.3.36 [13]
VMs running on a host machine with 16GB DDR2 RAM
and 8 core CPU core i7@2.93GHz. Each VM has been
allocated 4GB RAM and 2 CPU cores, and both VMs are
directly connected through an internal network. Also, we
run Docker 1.11 [2] on each VM with NET ADMIN option
enabled. Docker containers equipped with HIPL 1.0.8 trunk-
6467 [3] and Netperf 1.11 [9]. Containers are able to connect
to each other using Open vSwitch (OVS) 2.4.0 [10] or
Weave 1.5 [14]. Furthermore, to evaluate the SDN-based
approach, we run an ONOS instance on a separate machine
with 8GB RAM and Core i7 Quad Core 2.80 GHz CPU.
The controller machine can connect to OVS switches on
host machine through a 1GB Ethernet switch.

4.1. Latency

We measure the latency for establishing HIP tunnels and
then we continue the evaluation in order to measure the
network latency between two containers.

To begin with, we measure the latency only between two
containers that are placed in separate VMs (one container
in each VM). We consider three cases for comparing the
latency of making HIP tunnels. Firstly, we connect con-
tainers through a direct path by installing proactive for-
warding rules on OVS switches. In the next scenario, we
connect the OVS switches to the ONOS instance and we run
the default ONOS application for reactive forwarding. The
ONOS application only receives OpenFlow packet-in mes-
sages from the switches and installs OpenFlow flow-mod
rules for forwarding the data flows. Lastly, we run our SDN-
based prototype on ONOS to verify all HIP base-exchange
messages. We modify our prototype to allow connectivity
between containers, and we also set the difficulty of the
puzzles to the default value (difficulty 1).

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Latency(ms)

SynAPTIC (proactive rules)
ONOS Forwarding (only packet-in)

SynAPTIC (through SDN controller)

(a)

20 40 60 80 100
0

20

40

60

80

Number of containers in a VM

L
at

en
cy

(m
ili

se
co

nd
s)

SynAPTIC (proactive rules)
SynAPTIC (through SDN controller)

(b)

Direct Path

Weave-Default

Weave-Encrypted
SynAPTIC

0

200

400

600

800

1,000

1,200

1,400

1,600

T
C

P
tr

an
sc

at
io

n
ra

te
(T

C
P

R
R

)

(c)
Figure 4: (a) HIP base exchange latency (b) Base exchange latency in number of containers (c) TCP packets transaction
rate

In each case, we measure the delay between sending I1
message and receiving R2 message in HIP base exchange.
We repeat this process for 100 times to enhance the accuracy
of the measurements. Figure 4a shows the resulting CDF
graphs of our measurements. The latency to establish a HIP
base-exchange through a direct path between containers is
about 15 ms while it increases to 24 ms when forwarding
HIP base exchange using default ONOS forwarding appli-
cation. When we use SynAPTIC prototype to verify all
HIP handshake messages, the latency rises to about 35 ms.
Comparing with the default ONOS forwarding application,
our prototype only adds 11 ms to verify all base exchange
messages.

We continue our measurements to test the latency in
large scale deployments. In one VM, we run a single con-
tainer as a server and then in another VM, we increase the
number of containers from 20 to 100 and we use a script
to initiate the HIP base exchange from containers to the
server. Figure 4b illustrates latency measurements with stan-
dard deviations for HIP base exchange process for different
number of containers when the OVS switches are directly
connected versus when the OVS switches are controlled
by our ONOS prototype for SynAPTIC. The measurement
results deviating 3 standard deviations from the average
were considered outliers and omitted from the results. We
measured the latency between I1 and R2 messages for all
HIP connection requests received at the server. Based on the
results, the measured latency is quite stable even with 100
containers in both cases.

Next, we measure and compare the latency of transmit-
ting data flows through a direct path between containers
using Weave networks with and without encryption versus
using a HIP tunnel in SynAPTIC. For this purpose, we
run one container in each VM and we use TCP RR op-
tion in Netperf to measure the number of successful TCP
request/response transactions between containers. We set the
size of TCP packets to 1024 bytes and, we send and receive
TCP packets in a period of 50 seconds. To enhance the
accuracy of our measurement, we repeat the test for 100
times for each case. The bar chart in Figure 4c illustrates
the average number of successful TCP transactions with

standard deviations in a period of 50 seconds. As shown
in the plot, SynAPTIC decreases the transaction rate for
about 18% compared with the average transaction rate for
the direct path between containers. Weave has a little better
performance without encryption. However, when we enable
encryption in Weave, the performance degrades consider-
ably. One reason for poor encryption performance in Weave
is because, by design, the encrypted packets are forwarded
through the slow path between Weave routers.

4.2. Session Continuity

As we described earlier, SynAPTIC is able to provide
connection sustainability based on the update mechanism
in HIP. We run an experiment in the test network, where
we connect two containers in different VMs using OVS
switches and we use Netperf to stream TCP packets be-
tween the two containers. To test connection sustainability,
we detach the container that initiates TCP stream (Netperf
client) from the OVS switch and we connect it to a new
switch port. Figure 5 shows the amount of traffic received
at the other container (Netperf server). As we can see from
the figure, the delay to resume the existing session between
containers is less than a second. In our measurements, the
actual latency for HIP update procedure is about 3.2 ms.
However, the additional latency in Figure 5 occurs due to the
switch port detach/attach delay and network configurations
between containers.

Figure 5: Testing session sustainability in SynAPTIC

5. Discussion

At the following, we discuss different aspects of SynAP-
TIC architecture.
Comparison with existing solutions: SynAPTIC assigns
permanent and self-certifying identifiers (i.e. 128-bit HITs)
to containers which is large enough to support a magnitude
of containers. These identifiers can be used independently
of the underlying cloud network topology. In comparison,
Docker overlay and Weave employ tunneling techniques to
support large number of containers and these solutions may
not be effective to prevent IP address collisions (e.g. when
two or more tenant networks are merged together in the
same broadcast domain) and they may not be portable when
switching between cloud providers.

SynAPTIC benefits from the strong security mechanisms
in HIP that authenticate the containers with their public
keys, encrypt application data flows using IPSec and provide
countermeasures to protect against DoS and MitM attacks.
Additionally, SynAPTIC enhances security by providing
centralized access control and authentication, and protection
against replay attacks based on SDN networks. In contrast,
Docker recently adopted SSL/TLS protocol to enhance secu-
rity, but it requires complex certificate and identity manage-
ment. Weave can also supports encryption of the data flows.
However, as we illustrated in our evaluation, Weave has poor
performance with encryption. Also, encryption in Weave is
based on simple passphrases shared between Weave routers
which may not be secure method since the passphrases are
shared and anyone with a passphrase can join the network.
Visibility vs Security: As SynAPTIC encrypts data pack-
ets, it may reduce the visibility of containers to cloud
providers. However, we argue that, in container networking,
this is not a major issue. Unlike with VMs, each container
runs a certain service and thus, cloud providers should be
aware of the expected type of traffic from containers. There-
fore, even with encryption, providers can enforce access
controls or QoS policies for certain type of services.
Lessons Learned: The deployment of SynAPTIC requires
several considerations. There are still some features in
Docker containers such as migration feature which are not
fully supported. To achieve consistent view of the network
in our prototype that is running on ONOS, our prototype
needs to access the shared data store which is an expensive
operation especially in large networks and may increase the
latency of HIP base exchange. Since our solution stores
security credentials (i.e. HIP private keys) on containers,
one of the concerns is the trust between tenants and service
provider networks which can be improved by deploying
Virtualized Trust Platform Modules (vTPM) [16].

6. Conclusion

Virtualization based on Linux containers has become a
popular way to deploy cloud services. Yet, the recent trends
in cloud computing such as microservices and hybrid clouds
impose new challenges particularly on container networking

and connectivity. In this paper, we propose SynAPTIC ar-
chitecture that provides secure and persistent connectivity
between containers based on the standard HIP protocol.
SynAPTIC can be deployed by the tenants in today’s cloud
networks, while the cloud providers can provide additional
infrastructure support for tenants with software-defined net-
works. Our evaluation shows that SynAPTIC can outperform
some of the existing solutions.

Acknowledgments

This work was supported by TEKES (the Finnish Fund-
ing Agency for Innovation) as part of the DIMECC Cyber
Trust program.

References

[1] Calico Project. http://projectcalico.org.
[2] Docker Containers. http://docker.com.
[3] HIP for Linux. http://infrahip.hiit.fi.
[4] How to secure containers and microservices.

www.infoworld.com/article/3029772/cloud-computing/how-to-
secure-containers-and-microservices.html.

[5] IPSec connection between LXC containers.
http://flockport.com/connect-lxc-containers-with-an-ipsec-vpn.

[6] Kubernetes. http://kubernetes.io.
[7] Linux Containers. http://linuxcontainers.org.
[8] Microservice architecture. http://microservices.io.
[9] Netperf. http://www.netperf.org/netperf.
[10] Open VSwitch. http://openvswitch.org.
[11] OpenContrail. http://opencontrail.org.
[12] Pertino. http://pertino.com.
[13] VirtualBox. https://www.virtualbox.org.
[14] Weave. http://weave.works.
[15] P. Berde et al. ONOS: Towards an open, distributed SDN OS. In

Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 1–6, New York, USA, 2014. ACM.

[16] S. Berger et al. vTPM: Virtualizing the trusted platform module. In
Proceedings of the 15th Conference on USENIX Security Symposium
- Volume 15, Berkeley, CA, USA, 2006. USENIX Association.

[17] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The Locator/ID
Separation Protocol (LISP). RFC 6830 (Experimental), Jan. 2013.

[18] B. Gleeson et al. A Framework for IP Based Virtual Private Networks.
RFC 2764 (Informational), Feb. 2000.

[19] T. Heer, R. Hummen, M. Komu, S. Gotz, and K. Wehrle. End-
host authentication and authorization for middleboxes based on a
cryptographic namespace. In 2009 IEEE International Conference
on Communications, pages 1–6, June 2009.

[20] T. Henderson and A. Gurtov. The Host Identity Protocol (HIP)
Experiment Report. RFC 6538 (Informational), Mar. 2012.

[21] K.-H. Kim et al. Flexible network address mapping for container-
based clouds. In Network Softwarization (NetSoft), 2015 1st IEEE
Conference on, pages 1–5, April 2015.

[22] T. Koponen et al. Network virtualization in multi-tenant datacenters.
In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 203–216, Apr. 2014.

[23] M. Mahalingam et al. Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Net-
works over Layer 3 Networks. RFC 7348 (Informational), Aug. 2014.

[24] R. Moskowitz et al. Host Identity Protocol Version 2 (HIPv2). RFC
7401 (Proposed Standard), Apr. 2015.

[25] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Archi-
tecture. RFC 4423 (Informational), May 2006.

[26] Y. Nakagawa et al. Dynamic virtual network configuration between
containers using physical switch functions for NFV infrastructure. In
IEEE Conference on NFV-SDN, pages 156–162, Nov. 2015.

[27] D. Namiot and M. Sneps-Sneppe. On micro-services architecture.
International Journal of Open Information Technologies, 2(9), 2014.

