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HIP architecture decouples identifier and locator roles of IP addresses. A HIP commu-
nication starts with the Base Exchange, a four-way Diffie-Hellman-based key exchange
that authenticates the end-hosts and sets up symmetric key material for IPSec. Before
the Base Exchange is launched, the DNS looks up the Host Identity Tag (HIT) corre-
sponding to the peer hostname. When the HIT of the peer is not available, the Base
Exchange uses the opportunistic mode. This mode is a leap-of-faith implementation
which allows the communication with no HIP-aware peers, without introducing new
architecture or pre-configuration to be deployed.

This thesis focuses on adding IPv4 support for applications using HIP in the HIP for
Linux (HIPL) implementation. To achieve our goal, we have designed and implemented
the Local Scope Identifier (LSI) whose main purpose is to support backwards compat-
ibility with the IPv4 API. Furthermore, LSIs and HITs allow communication amongst
IPv4 and IPv6 applications. Therefore, it solves the problem with IPv4 and IPv6 in-
teroperability at the application layer for HIP protocol.

In addition, the LSI design approach proposed can be applied to move an opportunistic
mode library from user to system level, due to design similarities. This thesis presents
an analysis between the opportunistic mode implemented as a shared library and the
proposed design.

In the future we must keep down the loss of packets until the Base Exchange is estab-
lished. Finally, we discovered during the analysis that FTP needs future support.
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Chapter 1

Introduction

Since the Internet emerged, more than twenty years ago, the set of requirements
have changed. The initial design principles and architectural model for the Inter-
net have been shifting from an end-to-end towards an end-to-middle model [39)]. In
addition, the explosion of mobile technologies have revolutionized the networking.
Due to these new demands and technology development, various proposals try to
face some of these new challenges for the Internet. The typical solutions are related
with the network-level protocols, e.g., Mobile IP. This protocol implies an additional
infrastructure creating a home network which sends the packets between it and the
mobile host since each mobile host has an invariant home address. The drawbacks of
this approach are lack of security, performance and internetworking [58]. One such
alternative is the Host Identity Protocol (HIP). Further details about a comparison
between these two approaches can be found in [12].

HIP addresses a number of new requirements related to end-host multihoming, mo-
bility and security by introducing a new cryptographic namespace, splitting identifier
and locator roles of Internet Protocol (IP) addresses. In this new design, the network
layer identifiers continue being bound to the IP addresses and are in charge of the
routing. By contrast, the transport layer is bound to the endpoint’s identity which
the underlaying HIP layer defines. This approach has the benefit that although net-
work locators change, transport-layer connections persist.

HIPL positions the HIP architecture towards IPv6-compatible applications, but there
are still many IPv4-only applications. Although the IPv6 deployment is a fact, it
will take some time until we can refer to an IPv6-only environment. Therefore, there
will be a transition period where both IP versions must coexist. On the other hand,
its architecture already supports IPv4 and IPv6 networks [IJ.

In addition, HIP prefers Public Key Infrastructure (PKI) [61] which is not glob-
ally deployed. Concretely, HIP identities are cryptographically based, where a Host
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Identity consists on a public key. This Host Identity could be stored in DNS, a PKI
or be anonymous.

This thesis tackles these two problems, support for IPv4-only applications and net-
works without PKI support, to boost HIP deployment.

1.1 Problem statement

The following is the problem statement this thesis deals with:

1. Facilitate the deployment of HIP to legacy applications and networks. We can
subdivide the problem into two topics. The first point is to add support for
IPv4-only applications. As a consequence, we add interoperability between
IPv4 and IPv6 at the application layer using HIP. Our main contribution is
the design and implementation of LSIs, an IPv4-sized identifier which allows
to run IPv4 applications using HIP.

2. Support networks without PKI when the client is using HIP. The most common
scenario is to establish communication with a peer not HIP-aware. In this case,
HIPL fallbacks to a non-HIP communication.

We discuss more deeply the problems of deployment in [chapter 3}

1.2 Scope

The scope of this thesis is to design solutions for HIP for Linux (HIPL) implementa-
tion to support IPv4-only legacy applications and to allow HIP-based connectivity
without PKI. We implemented the IPv4 support based on Local Scope Identifiers
(LSIs). Meanwhile HIP support for networks without PKI is based on the oppor-
tunistic mode and a shim layer between transport and network layers. The design
and implementation use C [27] as programming language.

We also provide a performance analysis of the two new implementation features.

The main objective of the implementation is to prove that the design can work in
practice. However, the performance and reliability are a secondary evaluation crite-
rion.
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1.3 Structure of the thesis

The rest of this thesis is organized as follows:

Chapter B details and examines the fundamental protocols we need for introduc-
ing the research area of this thesis. In addition, it defines the major linux libraries
needed for designing and implementing our solution.

Chapter B discusses the problem statement presenting the deployment of the prob-
lem and deepening in the subproblems.

Chapter H presents our design and introduces implementation details of
Local Scope Identifiers and system-based opportunistic mode.

Chapter [ explains the implementation analysis. Furthermore, it presents some de-
sign alternatives for the current design. The analysis contains measured results and
charts, and then discussion of the results. Moreover, we go through FTP referral
problems and Maximum Transfer Unit (MTU) value modifications related to LSI
and the LSI address space. Finally, we study the LSI compatibility with the current
HIPL project and other extensions under development.

Chapter [ summarizes the main conclusions of this project.

To finalize, describes directions for future work, giving thoughts and ideas

for future improvements and extensions.



Chapter 2

Background

The aim of this chapter is to describe the background topics. We assume that
the reader understands the basic concepts of the TCP/IP suite and has skills in C
programming. The chapter is organized as follows: Eecfion 2.1 compares the main
differences between IPv4 and IPv6. Secondly, gives a general overview
of HIP. Following that, describes DNS and Eecfion 2.4 describes IPSec.
Apart from the general overview given for DNS and IPSec, we also include an ap-
proach about how they are integrated into HIP. Then, we talk about issues related to
UNIX programming: raw sockets, netlink, LD PRELOAD, TUN/TAP and dummy
interface. Finally, in Becfion 2.9 we discuss also an extensible session-layer architec-
ture using interposition libraries.

2.1 1IPv4 vs IPv6

The main motivation for updating IP [A9] was the lack of address space with IPv4.
Network Address Translation (NAT) has been a short-term solution that prolonged
the lifetime of IPv4. However, this and other challenges such as difficulties in de-
ploying new protocols made a new protocol version necessary: IPv6. IPv4 and IPv6
have a lot of conceptual similarities, but IPv6 introduces new features in routing
and network autoconfiguration that IPv4 does not have. Unfortunately, these IP
versions are not directly compatible, hence programs and systems designed to one
standard can not communicate with those designed with the other [34]. The differ-
ences between the protocol versions can be grouped into seven categories [6]:

1. Address size. [Pv6 addresses are 128 bits long, while IPv4 address size is 32
bits. In other words, an IPv6 address is four times longer than an IPv4 address.
This increases the address hierarchy, creating additional levels for addressing.

2. Optional header. IPv4 has a variable length header, meanwhile IPv6 simplifies
it. IPv6 base header has a fixed size that can be followed by optional headers
and, moreover, it does not include a checksum.

4
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3. Improved options. IPv6 includes some options not available for IPv4. Further-
more, the wire format for the options speeds up the packet-processing time
in routers. This is because they are handled with extensions that not all the
routers have to process.

4. Security. IPv6 introduces security mechanism at the network level providing
authentication, confidentiality and integrity using the IPSec protocol. IPv6
specifications mandate IPSec inclusion while this is optional with IPv4.

5. Provision for protocol extension. IPv6 design is more extendable in order to
support new technology changes.

6. Support for address autoconfiguration and renumbering. IPv6 allows to assign
local addresses automatically, as well as renumbering networks at a site more
dynamically.

7. Support for resource allocation. IPv6 supports the same Quality of Service
(QoS) features as IPv4, including differentiated service (DiffServ) indication.
However, IPv6 includes a traffic flow field which can provide a solid base to
build QoS protocols.

2.2 Host Identity Protocol

In this section, we give a HIP overview based on the related Request For Comments
(RFCs), Internet Drafts and a number of articles.

2.2.1 New stack architecture

Processes use sockets to send and receive network data in the current network ar-
chitecture. The traffic of different processes is demultiplexed by IP address, port
and protocol. On the contrary, HIP binds transport layer sockets to Host Identifiers
(HIs), allowing persistent bindings throughout IP addresses changes. As a result,
HIP architecture splits the identifier and locator roles of the IP address [A6]. While
the HI is the end-point identifier, the IP represents the topological location of the
host in the network. This requires a translation mechanism between the HI and the
IP, and vice versa. For achieving this translation mechanism, HIP locates a new
layer called Host Identity Layer in the TCP/IP stack, between the transport and
networking layer. The comparison between the current Internet bindings and the

ones introduced by HIP architecture is shown in

2.2.2 New name space layer and identifiers

HIP [52] introduces the HIP layer to the TCP/IP networking stack, as
shows. The new layer is based on HIs and it is located between transport and net-
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Current architecture New architecture
Process———  Socket Process———  Socket
Location End-point HI
IP address |
End-point

Dynamic binding |

Location IP address

Figure 2.1: Bindings comparison [46]

work layers. The Host Identity namespace is decentrally administered. Each host
creates and manages its own identities. A HI is effectively a public key of a private-
public key pair.

A HI is a public key of an asymmetric key pair. Using a public-key-based HI we
improve the security of the communication, increase protection against man-in-the-
middle (MITM) attacks and provide end-host authentication. HIP supports public
Rivest Shamir Adelman (RSA) and Digital Signature Algorithm (DSA) keys. There-
fore, the cryptographic nature of HI makes identity theft computationally difficult.

Application . .
Lg)eer Application

Sock
Dayor ' IPv4 APl | IPV6 APl | HIP API

:
Layar o™ TCP UDP

HIP
Layer HIP

Network
Layer IPv4 IPv6

tiyyker Ethernet

Figure 2.2: HIP layering architecture

HIT

A Host Identity Tag (HIT) is a 128 bit hash of a HI. The length of the HI depends
on the strength of the public key pair. In the current implementations, it is 1024
bits. The fixed-size HIT is necessary because Hls can be of variable length which
makes protocol encoding and sockets API binding challenging.
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A HIT is a type of Overlay Routable Cryptographic Hash Identifier (ORCHID) [45],
i.e. applications and APIs use HIT as an endpoint identifier. An ORCHID resembles
an [Pv6 address which is not routable from an IPv6 layer point-of-view and it has a
prefix in order to differentiate it from a real IPv6 address. An algorithm generates
the ORCHID taking as input the following parameters: a unique or statically unique
bitstring, a context id which is randomly generated and defines the usage context, a
hash function and a 28-bit prefix.

ORCHIDs are statically unique. However, there exist two situations where ORCHID
collisions could be possible. The first scenario is when two different input bitstrings
within the same context map to the same ORCHID. In this case, the state-set-up
mechanism resolves the conflict. The second situation happens when two input bit-
strings in different contexts map to the same ORCHID. The solution is to indicate
a conflict when this ORCHID is already in use.

The most important properties of HIT are:

e Same length as IPv6 addresses. Thus, HIP can use HITs in existing IPv6
applications.

e Self-certifying. HITs are self-certifying because of the second-preimage resis-
tance property of hash functions. In other words, given a Host Identity K1,
finding a different Host Identity K2, where hash(K1) = hash(K2), is computa-
tionally hard. In the future, as the computational power increases, this feature
could disappear. In this case, the length of the primary key should be in-
creased in order to preserve security, nevertheless the HIT size is fixed. The
best approach is to use the Host Identity when identification is needed [43].

e Probability of collision very low. For any given HIT the probability of collision
is approximately (27'26) + N where N is the total number of HITs [§]. The
birthday paradox states that given a large enough population and a hash space,
there may be collisions. A 128-bit hash will have 0.001% collision chance in a
921016 population [53].

LSI

The Local Scope Identifier (LSI) is a 32-bit representation for a HI. Thus, HIP can
build an LSI taking the last bytes of the HIT. LSIs have the same length as IPv4
addresses in order to support IPv4-only legacy applications. LSIs are only valid in
the context of the local host, similarly to socket descriptors. Another feature is that
LSIs are shorter than HITs, increasing the probability of collision.
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2.2.3 Interoperating with IPv4 and IPv6

Nowadays the deployment of IPv6 networks is slowly replacing IPv4 in the Internet.
Nevertheless, during this transition period between the two versions, network nodes
must be able to communicate with both protocols. The transition mechanism [2]
may include:

1. Domain Name Server (DNS) upgrade, introducing AAAA Resource Records.
2. Dual protocol stacks. Parallel support for both [Pv4 and IPv6.
3. Tunneling. IPv6 packets are tunneled over IPv4 regions.

4. A standard IPv6 programming interface to upgrade existing IPv4 applications
and ease the development of IPv6 ones.

HIP decouples the transport and internetworking layer, thus it solves interoperability
problems at the application and network node [22]. As shown in trans-
port layer sockets are not bound to IP addresses, then a legacy IPv4 application can
talk with a legacy IPv6 application. HIP supports IPv4 and IPv6 sockets because it
is able to resolve an IP to an end-point identifier: an LSI for IPv4 applications or a
HIT for IPv6 applications.

f\pplication v4 Application v6 ,

L o

' '

TCFE v4 TCP v6 TCP v4 TCIi’ v6

1 5
E Host Identity Host Identity E
........... \ !

: .

IPv4 IP\:/6 IPv4 IP\6

: :

Link layer E Link layer E

' '

Figure 2.3: Example of communication across IP versions with HIP

illustrates a typical scenario where an IPv4 application communicates
over an IPv6 network with an IPv6 application. The connectivity between both
hosts can be either IPv4-based or IPv6-based, independently of the application.
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2.2.4 HIP Base Exchange

The first phase in a HIP communication is the Base Exchange [52], as shown in
[Figure 2.4 The Base Exchange is a four-way handshake that performs end-to-end
authentication. The first packet triggers the communication and the other three
consist of a Diffie-Hellman key exchange which creates a piece of key material that
IPSec uses for encrypting and protecting the data.

Initiator Responder

R1:<challenge>

12:<response, authentication>

R2:<authentication>

Figure 2.4: HIP Base Exchange

The host initiating the communication is the initiator and the peer host is the re-
sponder. Typically, the initiator is the client host and the responder a server. The
initiator begins the handshake procedure by sending an I1 packet. When the peer
receives the I1 packet, it generates an R1 packet. The R1 packet contains a puz-
zle with a configurable difficulty level, the initial Diffie-Hellman parameters and a
signature. The puzzle is a cryptographic challenge that the initiator must solve in
order to continue the Base Exchange. The initiator tries to solve the puzzle and
answers to the responder with an 12 packet. The 12 packet must contain the solution
of the puzzle and Diffie-Hellman parameters. If the solution for the puzzle is wrong,
the peer discards the 12 packet and aborts the communication. Otherwise, the peer
finalizes the Base Exchange by sending a signed R2 packet.

A more detailed analysis of the HIP Base Exchange protocol can be found in [27].

2.2.5 HIP Opportunistic Mode

The opportunistic mode is based on the Leap-of-Faith (LoF) mode of operation.
LoF means that the initiator initiates the first connection without knowledge of
peer identity. Subsequent communications can use a cached identity of the peer.
It is based on the assumption that during the first connection, there is no attack
against the connection [37)]. In consequence, it is prone to MITM attacks because
the initiator does not know the responder’s identity. A third host placed between
the initiator and responder can intercept the communication and impersonate the
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responder. Therefore, it is recommended to use it only in trusted environments |10

illustrates an MITM attack with opportunistic mode. Alice is the initia-
tor and Bob the responder. When Alice sends an I1 packet, Trudy intercepts the
packet and responds with her own R1 to Alice. Consequently, Alice will think she is
communicating with Bob, but she is communicating Trudy.

Alice Trudy Bob

e

Figure 2.5: Man in the Middle attack during Base Exchange in Opportunistic Mode

TCP Extension for Opportunistic Mode

When the initiator starts the Base Exchange with opportunistic mode, it waits until
it receives an R1 packet from the peer or times out. If the peer is not HIP-enabled,
the initiator will be waiting until a timeout occurs. The extension discussed in this
section provides a way to decrease latency when the peer is not HIP-enabled based
on [5], improving user experience for HIP.

We explain the scenario independently of the peer capability to support HIP. Firstly,
a client application starts communications with a peer. The HIP layer blocks the
call and requests the HIT matching the IP. We assume that the initiator does not
know the HIT of the peer. Thus, the Base Exchange starts in opportunistic mode,
sending an I1 packet together with a TCP SYN message with a special TCP option.

If the responder is HIP-enabled, it processes the I1 packet and generates and sends
an R1 packet. The initiator receives the TCP SYN ACK option and discards it. At
this moment, the responder replies with R1 and the initiator application establishes
the communication with the peer HIT.

On the other hand, if the responder is not HIP-aware, it does not understand the
I1 packet and the TCP special option. It answers the initiator with a TCP SYN
ACK message. As the special option is not present in the response, the initiator
detects that the peer does not support HIP. The initiator unblocks the application
and establishes the connection without HIP.

This solution only works for TCP traffic, because it is based on the handshake of
the TCP protocol [50]. However, it is better than some other approaches, as e.g.
including an option in the IP header, because most currently deployed middleboxes
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drop the packet [5.

2.3 Domain Name System

This section introduces the basics of the Domain Name System (DNS) protocol [29].
DNS acts as an "Internet phone book". It is a distributed database which maps a
human name: a hostname, e.g. infrahip, or a Fully Qualified Domain Name (FQDN),
e.g. infrahip.hiit.fi, to an IP address. The DNS name space follows a hierarchical
organization where each node has a label. The domain name of a node is the list of
labels separated by a period, in this case a dot, starting at that node and ending at
the root node [54].

2.3.1 Resource Records

A Resource Record (RR) [55] is a DNS name record. There are different types of
RRs:

e A: Maps a hostname into an IPv4 address.
e AAAA: Also called a quad A record. Maps a hostname into an IPv6 address.

e PTR: Called pointer records. Maps IP addresses into hostnames. Provides
reverse resolution to A and AAAA RRs, translating an address, either [Pv4 or
IPv6. PTR records involve appending in-addr.arpa for IPv4 addresses and
ip6.int for [Pv6 addresses.

2.3.2 Resolvers and Name Servers

The resolver is usually implemented with the aim of providing communication be-
tween the application and the DNS server by sending DNS queries and managing
the responses. UNIX hosts use mainly two library functions to access the resolver.

Function gethostbyname translates hostnames to IP addresses and gethostbyaddr
provides the reverse functionality. Their main problem is that they only support
IPv4.

Functions getaddrinfo and getnameinfo also support IPv6 because they return
sockaddr structures. This structure is shown in and as it is visible, it
defines a generic socket address structure.
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struct sockaddr

{
uint8_t sa_len;
int sa_family;
char sa_data[14];
+;

Figure 2.6: The sockaddr structure

The getaddrinfo function resolves a hostname to an IP address. The function and
the associated data structure are shown in [Figure 2.7 Function getnameinfo is the
complement of getaddrinfo. It inputs an IP address and returns the hostname and
the service.

struct addrinfo

{
int ai_flags; /* Input flags */
int ai_family; /* E.g. AF_INET6, AF_INET */
int ai_socktype; /* Socket type */
int ai_protocol; /* 0 or IPPROTO_xxx for
IPv4 or IPv6 */
size_t ai_addrlen; /* Length of ai_addr */
char *ai_canonname; /* Canonical name */
struct sockaddr *ai_addr; /* Pointer to socket address
structure */
struct addrinfo *ai_next; /* Points next addrinfo */
+;

int getaddrinfo(const char *hostname, const char #*service,
const struct addrinfo *hints, const struct addrinfo **result)

Figure 2.7: The addrinfo structure and the getaddrinfo function

2.3.3 DNS Extension for HIP

DNS extensions for HIP are defined in [43]. They describe a new RR for HIP HIs
where the resolver library returns a HIT for IPv6 or HIP-aware |38] applications, or
an LSI for IPv4-only applications.

The information that is stored in DNS consists of:
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e IP addresses, via A or AAAA
e HI, HIT and possibly a set of rendezvous servers (RVS) [31] via HIP.

The mechanism implemented in HIPL is shown in When the application
triggers a DNS query, the resolver library returns the peer host HIT and IP. Firstly,
this information is stored in HIP data structures and secondly, the resolver returns
the HIT to the application. The application connects with the peer host using the
HIT. Before the data traffic starts, HIP initiates the Base Exchange with the peer
in order to establish the key exchange to protect the data.

The main advantage of storing HIs to DNS is to prevent MITM attacks. In order to
prevent spoofing attacks, it is recommended to use DNSSEC [10J]. On the other hand,
the main disadvantage is that contemporary DNS can not resolve HIs to hostnames
or IP addresses.

’ 1. getaddrinfo(hostname, Resolver Iib’ra
Application 6. HIT or 'ﬂ

L DNS Proxy

7. connect(HIT)

Socket layer
5. 4.<HIT P>

Transport

[ HIP } 8. BEX
[ IPSec J PEER
HOST
[ Network \
J 9. Pratected

application data

LOCAL HOST

Figure 2.8: Resolver interaction

When user wants to use HIP with a legacy application, one problem for the previous
solution occurs when the application wants to use an IP address instead of a HIT.
One solution for this is to introduce a domain name prefix specific to HIP. E.g a
"hip-www.example.com" DNS query could return a HIT or an LSI [62].

2.4 1P Security

IP Security (IPSec) [26] operates at the network layer providing security support
for transport-level protocols. It secures communications by authenticating and/or
encrypting each packet. As it is below the transport layer, it is transparent to
applications.
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2.4.1 Architecture
Security Policy

A Security Policy (SP) tells an IPSec implementation how to manage the different
datagrams received or sent to the network device. These rules decide when the host
applies or bypasses IPSec protection, or discards a packet. They are stored in the
Security Policy Database (SPD).

Security Association

A Security Association (SA) defines a set of security-related information, includ-
ing the symmetric key and algorithm, describing an IPSec protection between two
devices. The management of SAs involves a three-tuple:

e Security Parameter Index (SPI). Pseudo-randomly derived number which
identifies a particular SA uniquely between two machines. Its purpose is to
distinguish among different SAs from each other. SPI is sent on the wire.

o Destination Address. Address of the device for whom the SA is established.

e Security Protocol Identifier. IPSec provides the following security proto-
cols for the association:

— Authentication Header (AH). Provides data integrity and authentication,
but not privacy because the IP payload is not encrypted. AH is not
commonly used in practice.

— Encapsulating Security Payload (ESP). Encrypts and authenticates a con-
nection data flow. The use of ESP [25] is more common than AH because
it is a superset of ESP.

Each protocol supports two modes of operation [26]:

1. Transport mode. This mode protects the traffic between two end-hosts
[42]. The transport mode is not compatible with NATs which is one reason
why it is not used widely.

— AH. Offers security to selected portions of the IP header, header
extensions and selected options.

— ESP. Offers security for protocols higher than IP, because only the
IP payload is encrypted.

2. Tunnel mode. Used for network-to-network, host-to-network or host-
to-host communications over Internet. IPSec encapsulates the whole IP
datagram, including the header. Therefore, the packet must be encapsu-
lated within a second IP packet in order to be routed. If AH is employed,
some parts of the built IP header can be encrypted.
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Secure Association Database (SAD) stores information related with SAs. An SA is
unidirectional, meaning that a single SA only handles inbound or outbound traffic.
To secure bidirectional communication, two SAs must be created.

The main difference between SPs and SAs is that an SP specifies what we want to
encrypt and an SA details how we want to secure it.

2.4.2 [IPSec with HIP

Base Exchange sets up key material for SAs to encrypt the data traffic. After the
Base Exchange, the ESP protocol [44] protects user data.

HIP currently supports a new ESP mode called Bound End-to-End Tunnel (BEET).
This mode combines transport mode format and tunnel mode semantics. The
"outer" addresses go on the wire and the "inner" addresses are the ones the ap-
plication sees. The BEET mode with HIP uses HITs as inner addresses and IP
addresses as outer addresses. shows the difference between BEET, tunnel
and transport mode. As we can observe, transport and BEET mode headers have
the same syntax. Furthermore, BEET mode semantics are similar to tunnel mode
ones, although the tunnel mode introduces an extra IP header.

Transport mode Tunnel mode

‘ IP ‘ ESP‘ TCP‘ DATA‘ ‘ IP‘ ESP‘ IP ‘ TCP‘ DATA‘

Beet mode = Transport header + Limited tunnel semantics
D Outer @

‘ P ‘ ESP‘ TCP ‘ DATA‘ [ ] inner @

Figure 2.9: Comparison of BEET, transport and tunnel mode

The BEET mode does not include HITs in the packet which goes on the wire. In-
stead, the SPI implicitly defines the HITs. IPSec links each association to two ESP
SAs, one for incoming and one for outgoing packets. An SA pair is indexed by 2
SPIs and 2 HITs. HIP updates these associations and removes them when the HIP
association finishes.

2.5 Raw sockets

A socket [63] in the context of TCP/IP is an end-point of a bidirectional communi-
cation flow. It allows communication between an application and the TCP/IP stack.
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Basically, we can divide socket types into three types [I7]:

e connectionless sockets (SOCK_DGRAM)
e connection-oriented sockets (SOCK_STREAM)

e raw sockets SOCK_RAW

However, we limit the discussion to raw sockets. One of the most important features
of raw sockets that we use in the LSI implementation of HIPL is the possibility to
access the packet header and change it. Non-raw sockets usually strip the header
and receive only the payload.

Raw sockets allow us to implement Layer 4 protocols (L4) or L3.5 like HIP in the
userspace and to implement some processing from those protocols that are normally
processed in the kernel [4].

2.5.1 Creation

When an application establishes network communications, it first needs to open a
socket by calling the socket() function. The first argument to the function sets the
address family. It can be AF_INET for IPv4 or AF_INET6 for [Pv6-enabled sockets.
The second argument determines the socket type. For example, the SOCK_RAW value
creates a raw socket. Finally, the third argument defines the protocol.
shows the prototype of the socket system call for creating a raw socket.

int socket(int family, int type, int protocol)

Figure 2.10: The socket function

Raw sockets can use the function bind() in It can set the source address
used to send output packets over the raw socket and it also acts as an input filter.
One of the most common errors from bind is Address already in use. This error is
due to an existing connection that is already listening on the port in which the server
tries to bind. One possible solution is to bind the port to the wildcard interface after
the send call finishes.

2.5.2 Output packet

The user process must calculate and set the header checksum of the transport layer
packet before sending it, assuming that the specific transport protocol employs check-
sums. Raw sockets allow that the protocol implementation can either specify the
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int bind(int sockfd, const struct sockaddr *my_addr,
socklen_t addrlen)

Figure 2.11: The bind function

whole IP header or let the networking stack creates it. The implementation controls
this using the IP_HDRINCL socket option. Only IPv4 sockets can use the IP_HDRINCL
option. shows the sendto interface.

size_t sendto(int sockfd, const void *buff, size_t bytes, int flags,
const struct sockaddr *to, socklen_t *addrlen)

Figure 2.12: Function for sending data

2.5.3 Input packet

The kernel receives a datagram and passes it to the raw socket only if the three
following conditions are true:

e The raw socket protocol and the received datagram protocol field match.

e If the local IP address bound to the raw socket by bind matches the destination
IP address of the packet or the socket has not been bound or it is bound to
INADDR_ANY for IPv4 or IN6DDR_ANY_INIT for IPv6.

e If a foreign IP address was specified with connect and matches the source IP
address of the packet.

If these three prerequisites are met, the kernel passes the datagram to the raw socket,
including the IP header if the IP_HDRINCL socket option is activated.

2.6 Introduction to the libipq library

Libipq [33] is a development library for iptables userspace packet queuing [32]. Net-
filter provides a mechanism to queue packets to the userpace and then outputting
them back to the kernel with a verdict that determines whether the kernel must
accept or drop the packet. HIPL uses this mechanism for modifying the packet and
reinjecting it to the kernel. We will give an introductory overview to the basic API
usage.
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Firstly, in order to redirect the packets to the userspace, an iptables rule must be
set up with the argument QUEUE as follows:

iptables -I OUTPUT -d LSI -j QUEUE

The before rule queues all output packets whose destination address is an LSI. The
next step is to initiate an ipq handle to read the queued packets and set the mode to
get the data. There are two possible modes: metadata (IPQ_COPY_META) or payload
(IPQ_COPY_PACKET). These functions are illustrated below.

h = ipg_create_handle(0, PF_INET)
ipg_set_mode(h, IPQ_COPY_PACKET, BUFSIZE)

Function ipq read reads packet contents and function ipg message type returns
information about this content. Specifically, if it is a network packet, it returns the
value IPQM_PACKET and if it is an error message, it returns the value NLMSG_ERROR.
Then, ipg get packet gets the packet content. At this point, packet content can be
modified prior to reinjection back into the kernel. If an application modifies a packet,
it must update checksums. Otherwise, the kernel discards the packet because of an
invalid checksum. Furthermore, queue handlers are IP protocol specific, hence the
packet IP family must stay unchanged. Function ipq set wverdict allows us to set
the packet verdict: ACCEPT or DROP. If the verdict is ACCEPT, the packet continues
the process through the stack. A DROP verdict drops the packet. The function ipg -
set_werdict sets the verdict depending on the id of the packet, this is a field which
allows libipq to distinguish the packets because its value is unique.

ipg_read(h, buf, BUFSIZE, 0)

ipq_message_type (buf)

ipq_get_packet (buf)

ipq_set_verdict(h, packetId, NF_ACCEPT,0, NULL)
Finally, the next call closes the handle:

ipg_destroy_handle(h)

2.7 Introduction to Netlink

Netlink [T5] allows userspace applications to communicate with the kernel. It is used
e.g. by Berkeley Internet Domain (BIND) [54] to configure routing-related informa-
tion. It sets the following aspects of the network control plane [24]:

e NETLINK_ROUTE. Userspace routing daemons use netlink to update the kernel
routing table.
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e NETLINK_FIREWALL. IPv4 firewall code sends packets through netlink.

e NETLINK_NFLOG. Communication channel for the userspace iptable manage-
ment tool and kernel space Netfilter module.

e NETLINK_ARPD. Manages the ARP table from userspace.
To use netlink, the application has to create a socket. The netlink address family

is AF_NETLINK and the type is either SOCK_RAW or SOCK_DGRAM. The protocol type
refers to the netlink feature the socket uses.

2.7.1 Message Format

illustrates netlink messages. All netlink messages consist of a header
plus a payload.

NLMSG_DATA NLMSG_NEXT

Netlink Message - Netlink Message
Header PAD Ancilliary Data Header

-—
NLMSG_ALIGN

NLMSG LENGTH

Figure 2.13: Netlink message and netlink macro interaction

The header contains metadata about the message. The header is depicted in [Figure 2.14}

struct nlmsghdr{
_-u32 nlmsg_len; /* Message length: Header + data */
_ul6 nlmsg_type; /* Message type */
__ul6 nlmsg_flags; /* Additional flags */
_u32 nlmsg_seq; /* Sequence number */
u32 nlmsg_pid; /* Sending process PID */

Figure 2.14: The netlink header structure

2.7.2 Netlink Macros

The following macros build and manipulate the messages. For more information, see
[15].
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e NLMSG_ALIGN. Used internally by the other macros. Rounds up the length of a
netlink message.

e NLMSG_DATA. Given a pointer to a netlink header structure, this macro returns
a pointer to the ancillary data.

e NLMSG_LENGTH. Sets the nlmsg len field of a netlink message header. The
macro returns the size of the payload including the header, rounded up to the
nearest NLMSG_ALIGNTO bytes.

e NLMSG_NEXT. If a netlink message has more than one response, this function
finds the next response.

2.8 Introduction to Dynamic Linking with LD PRELOAD

Dynamic linking provides the possibility of intercepting a function call that an appli-
cation makes to any shared library at running time [9]. Once the interposer library
intercepts the call, it can call the real function the application intended to call, as
well as overwrite the function call and modify the original functionality. E.g. in
HIPL we can load the variable with three intercepted libraries:

export LD_PRELOAD=libinet6.so:1libhiptool.so:1libhipopendht.so

The interposition with the real call is divided into two steps:

1. Create the interposer library. This will overwrite functions from other libraries,
like e.g. glibc. The interposer library may contain the implementation of the
functions to intercept.

2. Set the LD PRELOAD shell environment variable with the absolute path to
the interposer library.

When the application calls the function that the interposer library redefines, as this
library is loaded before the other ones, the loader first finds the symbol of the mod-
ified library when trying to resolve the external reference [19).

If the user or administrator does not want to use the interposition library, he or she
must undefine the LD PRELOAD variable.

We must take into account that setuid programs disable LD PRELOAD, in order
to prevent security problems. In addition, LD PRELOAD is not available for all
operative systems and might have problems with some Linux extensions, such as
e.g. Security-Enhanced Linux (SELinux). Another disadvantage is the use of LD -
PRELOAD with chaining applications, i.e., when an application is preloading the
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same function with two different interposition libraries, how do we know which is
the library that the loader calls first?

2.9 TESLA

TESLA is a transparent and extensible session-layer architecture for end-to-end net-
work services [21]. There has been an increasing importance of session-layer services
in the Internet, i.e., services which have a common flow between a source and des-
tination, and produce groups of flows using shared code and possibly shared state.
Current research focuses on increasing transport-level functionality, some examples
are: sharing congestion information, end-to-end session migration for mobility, en-
cryption services or setting up multiple connections to improve the throughput be-
tween a source and a destination. Originally these services were in the kernel level,
though it would be advantageous to have them in the user level. This later approach
is a complicated process, because the implementation must specify the internal logic,
algorithms and handle details such as process management or interprocess commu-
nication, increasing the programmer’s time and effort. The three design goals of
TESLA are:

1. Provide a high-level abstraction to session services, which operate on network
flows and treat flows as objects.

2. Configure session services transparently from the application. TESLA allows
services to define APIs to be exported to TESLA-aware applications.

3. Provide the possibility of composing different services to offer new functional-
ity. TESLA writes session services as event handlers with a callback-oriented
interface.

TESLA is a C++ framework which could be configured using an interposition library
to modify the interaction between the application and the system. An implementa-
tion of this design is available in [60].

2.9.1 Architecture

As we previously explained, TESLA is an interposition layer between the application
and the operating system or libraries, providing an abstraction level for session-layer
services. It uses the flow handler concept to provide this abstraction. Each session
service is an instance of a flow handler where TESLA allows communication between
the different session services. On an abstract level, a flow handler deals with traffic
corresponding to a single socket. There is another flow type called network flow
which is a stream of bytes sharing a logical source and destination. The flow handler
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operates or transforms an input byte stream, such as e.g. compressing or encrypting
the input network flow, and returns one or more network flows. Therefore, input
flows correspond to upstream handlers, such as end application, and output flows
map to down-stream handlers, e.g. send routine.

2.9.2 Interposition

TESLA acts as an interposition library. The library libtesla.so is added as a
shared library with the LD_PRELOAD environment variable, a concept discussed in
Eecfion 2.8 This library contains the interposition library but not the handlers. The
handlers are provided by the flow_handler API. Flow handlers are virtual methods
characterised by being asynchronous and event-driven, hence methods must return
immediately. We can divide them into two groups:

e Downstream methods. Invoked by the input flow, they provide an abstract flow
to the upstream handler.

o Upstream methods. Invoked by the handler output flow. They act as callbacks
invoked by the upstream handler.

Some flow control methods exist in both groups in order to avoid bottlenecks in the
application or in TESLA. A flow handler may signal the input flow to stop sending
data and later on restart the handler, as well as an output flow may check whether
the upstream handler is available. Sometimes the handler must re-enable data flow
after certain period of time and TESLA provides a timer for this purpose. Moreover,
in some cases the handler must provide additional services. For this reason, TESLA
provides a mechanism to send events asynchronously to the application.

2.10 TUN/TAP

TUN and TAP [B0] are virtual network kernel drivers. TUN/TAP is similar to a
Point-to-Point or Ethernet device, which receives and sends packets between userspace
programs. TUN/TAP usually sends Ethernet or IP frames, depending on the chosen
driver, between the host network and a process. The main purpose of TUN/TAP is
tunneling network traffic.

TUN simulates a network device and operates at the network layer (Layer 3) of the
OSI model. It is used for routing packets. A userspace application can send IP
frames to the interface /dev/tunX and the kernel will receive the frame from this
interface, as well as the other way around.
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TAP simulates an Ethernet device and operates in the data link layer (Layer 2) of the
OSI model. It can be used to create a network bridge. A userspace application can
send Ethernet frames to the interface /dev/tapX and the kernel can receive frames
from this interface.

The main difference between TUN and TAP is that TUN operates with IP frames
and TAP with Ethernet frames.

TUN/TAP is used for Virtual Private Networks (VPNs). Some related projects us-
ing it are OpenSSH or OpenVPN. In addition, TUN/TAP is also used for virtual
machine networking. Projects such as Bochs or VirtualBox use it.

2.11 Dummy interface

TCP/IP uses a dummy interface to assign an IP address to the localhost. Serial
Line Internet Protocol (SLIP), Point-to-Point Protocol (PPP) and HIP for HIPL
implementation use dummy interfaces. This interface is Linux-specific.

The reason for a dummy interface is the need for an internal IP address although the
host is not connected to an Internet Service Provider (ISP). There are network-aware
applications such as mail which need to have an IP address to connect to, even if
does not lead anywhere. For example, consider a laptop which is disconnected from
the network, with the loopback interface as its single network active device. An
application may want to send data to another application in the same host. The
application tries to send data with the IP assigned by the ISP but the laptop is
not connected. Thus, the kernel does not know the IP and discards the datagram,
returning an error to the application. However, if the dummy interface serves as the
alter ego of the loopback interface with the external IP address assigned and routed,
every datagram to this IP is delivered locally [28].
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Problem Statement

3.1 Deployment Problem

Amongst the active implementations of the HIP protocol, HIPL developed by HIIT
[13] is the only one which does not yet offer total support for IPv4-only applications.
We must note that [Pv4-only applications are only supported by HIPL in the op-
portunistic mode [14].

Although IPv4 is still the facto of today’s Internet, network infrastructure and ap-
plications are transitioning towards the next generation of Internet Protocols, IPv6.
Nowadays, as we can not talk about an IPv6-enabled Internet, both IP protocols
must coexist.

The current HIPL implementation already supports IPv4 and IPv6 networks, as well
as IPv6 applications. For IPv4 support, the strategy is to map an IPv4 address in
an IPv6 structure. Thanks to this mechanism, the whole of the code structure for
[Pv6 can be reused for IPv4. However, there are still some problems with IPv4 and
IPSec, such as the legacy NAT traversal [T].

However, HIPL does not yet support [Pv4 applications. The existence of IPv4 sup-
port is important because there is yet a lack of IPv6 applications for Linux.

We assume that there will be no flag day to deploy HIP and especially that the Inter-
net infrastructure (DNS servers) will not have HIP support immediately. Therefore,
we assume that HIP requires tools for incremental deployment. The opportunistic
mode can be used as a mechanism to discover when the communications can be
established using HIP with the peer. Currently, the opportunistic mode design is an
interposition library, but this thesis proposes to change this schema.

24
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The main topics of this thesis are:

e Describe the LSI identifier.

e Support IPv4-only applications. The scope is limited to the ICMP and ICMPv6
protocol, as well as TCP and UDP transport protocols.

e Add interoperability between IPv4 and IPv6 applications.

e Support opportunistic mode as a system library.

The design and implementation are concentrated around boosting HIP deployment.

3.2 Elaboration of the Deployment Problems

This section elaborates the main deployment problems that we already listed in the
previous section. We describe the main problems and introduce a brief description
of how our solution can solve them.

3.2.1 Describe the LSI Identifier

The LSI identifier is syntactically an IPv4 address but semantically represents a
HIP identifier. There is an open discussion about which must be the most conve-
nient range for LSI address space. This address space may be static or dynamic.
However, whatever option is chosen introduces different problems which would be
analysed in this thesis.

One aim of this thesis is to widely document the LSI identifier which is always men-
tioned very briefly in different RFCs and drafts.

3.2.2 Supporting IPv4-only Applications

Currently IPv6 applications are supported by HIP using the HIT as an application
layer identifier. HITs resemble IPv6 addresses, thus developers do not have to modify
the application to make it use HIP and the application is unaware of HIP. A similar
mechanism is necessary to support IPv4 applications. Therefore, HIPL implemen-
tation must be extended in order to support a new identifier called LSI.

LSIs resemble IPv4 addresses. The choice we made implies that LSIs can be in-
terpreted correctly only by the localhost because they are valid only within local
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context. This statement generates referral-related problems. The referral problem
originates from broken application layer protocols that send IP addresses (HITs or
LSIs in the case of HIP) on the wire. When such a protocol sends LSIs on wire, they
become invalid or incorrect at the peer host. In this thesis, we study how to solve
this problem and we will see that the system-based opportunistic mode could be one
possible alternative for solving that.

One aim of this thesis is to analyze the differences and performance between HITs
and LSIs, as well as to show an example of the referral problem using LSIs.

Applications the LSI implementation supports are limited to the ones using the
ICMP protocol, as well as TCP and UDP transport protocols. Other protocols are
out of the scope of this thesis.

3.2.3 Interoperability between IPv4 and IPv6 Applications

The design and implementation adds support for IPv4 applications. As the imple-
mentation already supports IPv6 applications, both IP versions will be supported
by HIP and, therefore, it is possible to enable communications between different IP
versions.

Owing to the transition between both IP versions, IPv4 applications may continue
working with IPv6 applications. For example, an IPv4 application on the client must
be able to communicate with the IPv6 application on the server, and the other way
around.

Moreover, the use of IPv4 applications working over an IPv6 network using HIP,
could be a compelling story for HIP. This is because in general IPv6 migration re-
quires dual stacks, that is, a host has both an IPv4 and an IPv6 protocol stack,
but HIP uses that in a different manner. At some point, in an [Pv6-only world,
systems will be able to turn off their IPv4 stack [55]. In a HIP case where there are
an IPv4 client and an IPv6 server, for example, the IPv4 address used by the client
application corresponds to the LSI, and this LSI would be translated to a HIT by
the HIP layer. At this point, we suppose that the network address is IPv4d. When
the packet arrives to the server the packet is translated until it contains the IPv6
identifiers called HITs. In this case, the difference to a non-HIP environment is that
HIP provides two identifiers to support both IP versions. However, without using
HIP, the IPv4 and TCP modules detect that the destination socket is an IPv6 one,
and converts the IPv4 address into the equivalent IPv4-mapped IPv6 address.

One goal in this thesis is to decide when the use of one protocol is preferable over the
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other depending on the IP version of the application of destination. Moreover, we
want to provide communication between applications which use different IP versions
with our implementation.

3.2.4 Supporting Opportunistic Mode as a System Library

As discussed in the background chapter, the dynamic linking library shims system
calls. Interposition libraries intercept these calls and change the expected function-
ality. The LD PRELOAD environment variable can load the interposition libraries.
The current HIPL opportunistic mode library uses this mechanism.

Our proposal is to change this behaviour and include the opportunistic mode during
the static compilation, moving the opportunistic library from the user to the sys-
tem level. The main advantage is that the system-based opportunistic mode does
not need extra libraries and is independent of support to individual sockets API
functions. Furthermore, this method can make the user experience easier using HIP
because the user does not have to configure any environmental variable.

Both approaches do not need to modify the source code of applications thus, the
library supports legacy applications.

In addition, the system-based opportunistic mode allows to support networks with-
out PKI. A PKI |20} provides end-to-end security and it is an arrangement that binds
user identities with their public keys by means of a Certificate Authority (CA). There
is a registration process for the binding which must be carried out by software or
under human supervision.

However, HIP does not need a PKI. Since the identity is represented by the public
key, any proper protocol able to check that the party owns the private key corre-
sponding to its public key is enough. In our case, this authentication protocol is
included during the Base Exchange which creates and negotiates the keys. However,
if the peer does not have a PKI, the HIP host must use a non-PKI. The deployment of
global PKI infrastructure is virtually impossible, thus the opportunistic end-to-end
security, which is based on the concept of Leap of Faith security or weak authenti-
cation, is enough for heterogeneous wired and wireless networks.

As there is no flag day where the majority of the hosts will support HIP, the most
common scenario would be to establish communication with a non-HIP-aware peer.
In this case, HIPL must fallback to a non-HIP communication. The system-based
opportunistic mode includes this feature.
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One aim of this thesis is to analyze the differences and performance between these
two approaches.



Chapter 4
Design

This chapter describes the semantics of the LSI identifier. We discuss the behaviour
designed on both client and server side and also the interoperability design between
the two IP versions. Afterwards, we introduce a design proposal for an opportunistic
mode that reuses the LSI design.

4.1 Local Scope Identifier

This section defines the main features of LSI and explains the different techniques
HIPL uses in order to generate this identifier.

4.1.1 Definition

In our design, LSI is independent from the HIT. Hence, an LSI is not derived from
HIT. This approach eliminates collision and security problems raised when HIP gen-
erates an LSI from a HIT, because an LSI is much shorter than a HIT.

In our implementation, an LSI address is allocated from the 1.0.0.0/8 subnet by de-
fault, but the user or administrator can change the prefix dynamically. As initial de-
cision, we chose the prefix 192.168.0.0/24 but due to NAT problems, we moved to the
other prefix. These problems arose because IANA allocates the range 192.168.0.0/16
for private-use networks. Consequently, HIP could not differentiate between a NAT
address and an LSI identifier. The actual approach continues to generate prob-
lems with NATs because the 1.0.0.0/8 address space is unallocated by IANA, thus
not registered to HIP. The related problems and possible solutions are discussed in

29
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4.1.2 LSI Generation

When the user or the system starts running hipd and runs an IPv4 application, there
must exist a mapping between the HIT, the LSI and the IP. The user can execute
the mapping manually. Otherwise, hipd establishes the mapping automatically. The
hipd does not send the LSI on wire but it needs to know the corresponding HIT
and IP for HIP and ESP-related processing. We must notice that the peer LSI must
be unique in the machine, because the host can not have two different peer host
names mapped with the same peer LSI. There are different ways for establishing the
mapping between the identifiers and the IP:

1. Manually. The hipconf tool provides an option which the user uses to maps
LSIs manually.

2. DNS interception. The DNS Proxy extension for HIPL includes support for
LSI resolution. When the application makes an AAAA record request, the
DNS Proxy module returns a HIT as an AAAA record. When the application
makes an A record request, the DNS Proxy program allocates and returns an
LSI as an A record response.

3. Base Exchange. The first two possibilities show the mapping from the point of
the initiator, but the responder must map LSIs. The responder generates an
LSI for initiator automatically. The hipd handles the automatic LSI generation
during the Base Exchange, specifically when the responder receives the 12
packet.

4.2 Packet Processing

The LSI processing consists of inbound and outbound packet handling. The HIP
firewall (hipfw) handles input and output packet processing for LSIs in HIPL im-
plementation. It should be noted that hipfw is actually a multi-purpose daemon
that can also handle HIP-based access control (hence the name hipfw). Moreover,
interoperability with HIPL userspace IPSec needs further work.

Below is an example of a client-server scenario. The systems are running hipd, which
is responsible of HIP control plane signalling, and hipfw daemon. A client and a
server are running applications, e.g. netcat [AI] which is a networking utility which
reads and writes data across network connections, and both of them using TCP as
the transport layer protocol. The server starts up a service at port 5555. The client
application tries to connect to the server over TCP. Then the server accepts the
connection, reads the received data and prints it on the screen.
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Output Packet Processing

The output packet processing is illustrated in and described below.

User
{ 1. Run client app

2. getaddrinfo(hostname)
Applicationv4 <=———————_ = Resolver

3.LSI
4. Connect(LSI)
Transport

5. IPTABLES packet interception

6. Trigger base exchange

Firewall =——————— "= HIPD
rewa 7. <OK,HIT_PEER>

8. Packet reinjection (LSI->HIT conversion)
IPSec
9. ESP packet

Network

Figure 4.1: Client-side schema

. The user runs a client application.

. The application queries the resolver in order to translate the hostname.
. The resolver returns the LSI assigned to this hostname.

. The application contacts the peer LSI by calling connect ().

. The packet traverses through sockets and TCP layers until hipfw captures it
in the network layer owing to an iptables rule.

. The hipfw checks whether the local database already contains the peer HIT
corresponding to the peer LSI. If it does not find the entry, hipfw triggers the
Base Exchange through hipd.

. When the Base Exchange finishes correctly, hipd communicates the peer HIT
and LSI to hipfw.

. The hipfw can build the new packet, translating the LSI pair to the HIT pair.
In addition, hipfw caches the HIT-LSI mapping for future packets. In this
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way, there is no triggered second Base Exchange for the same connection and
the process speeds up. Then, it reinjects the packet again to the network stack
with HITs converted to LSIs.

9. The IPSec module translates HITs to routable IP addresses and an SPI number,
handles ESP encapsulation and transmits the packet on wire.

4.2.2 Incoming Packet Processing

shows inbound packet processing. We focus mainly on the inbound pack-
ets that the server processes.

Application v4/v6

—*Transport

Firewall

5. Packet(LSlI) 3. IPTABLES packet interception

. injecti ->
IPSec 4. Packet reinjection (HIT->LSI)

2. SA detected

— Network =
1. Inbound packet

Figure 4.2: Server-side schema

This scenario is handled as follows:

1. The server receives a packet.

2. A SA entry in the SADB demultiplexes the SPI field of the ESP header. The
ESP module decrypts the packet and converts the IPv4/v6 header to an IPv6
header containing the HITs.

3. An iptables rule in hipfw captures the packet. At this point, the hipfw checks
whether LSI processing is necessary or not, as we describe in more detail in
the following section.

4. If hipfw applies LSI processing, it reinjects the packet to the stack again, but
this time with an IPv4 header containing LSIs.
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5. The packet with the LSIs arrives to the stack and the stack delivers the packet
to transport and application layers.

4.2.3 Interoperability IPv4 and IPv6

As we have explained in kubsection 223 HIP supports IPv4 and IPv6 interoper-
ability. This feature occurs during inbound packet processing. The problem is how
hipfw manages to demultiplex an incoming packet to an LSI or a HIT. An operating
system process is identified by an IP address, a port number and the network pro-

tocol. We must notice that a single port can be occupied by the same application
but with different address family (or protocol), as illustrates.

Following policy considerations specified in [?], we design a local policy in order to
decide when a HIT must be translated to an LSI. The hipfw demultiplexes to an
LSI if no process is listening to IPv6 on the particular port number. In other words,
HITs are preferred over LSIs because they do not have the LSI disadvantages, as e.g.
non-routable or callback problems and furthermore, we expect IPv6 to dominate
in the future. This logic applies only to TCP and UDP and not to ICMPv4 and
ICMPv6. This is because the ICMP protocol is part of IP where ICMP messages
are usually generated as a response to errors in IP datagrams.

Process 1 Process 2
AF_INET: port_A AF_INET6: port_B
Network
Stack
IPv6 Header UDP/TCP Header Data

Figure 4.3: UDP and TCP headers contain the destination port number. The hipfw
decides which IP protocol to choose depending on the absence or presence of the
listening process in the IPv6 or [Pv4 address family

4.3 Alternative Design for LSIs

Our design is centered around the idea of capturing LSI packets with iptables rules
in hipfw and transforming them only when it is necessary. This approach overloads
hipfw work and adds some problems, such as the increased latency per each packet
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because of the processing time.

The alternative design is to manage LSIs using IPSec SAs instead of the iptables
rules. An SA pair could be associated with two SPIs, two HITs and also two LSIs.
Furthermore, there must exist an SP that matches packets with LSIs or an LSI prefix.

We discarded this design because current Linux IPSec cannot associate both an LSI
pair and a HIT pair into a single SPI.

4.4 Opportunistic Mode Design

The opportunistic mode was already supported in the HIPL implementation as a
user library. Our implementation goal is to move the opportunistic mode library to
the system level by reusing the LSI design for supporting the opportunistic mode.
The main advantages of this approach are:

e Solving opportunistic library bugs. examines the supported system
calls. But, we can already comment that supporting all socket calls is cumber-

some.

e Solving library dependency problems. There are some problems with chaining
of LD PRELOADed applications. All chained libraries must support chaining
properly or otherwise the application’s network connectivity is broken.

e Supporting more applications. The system opportunistic mode supports more
applications because it is independent from the operating system and only
depends on the transport layer protocols supported by hipfw.

The library does not translate raw sockets or sockets already bound to HITs and it
can translate IPv4 or IPv6 addresses to HITs. As the address size for the different IP
versions is different, it creates for each IP-based socket a completely new HIT-based

socket [36].

The system-based opportunistic mode design is described below. We must differ-
entiate two possible scenarios, depending on the peer capability to support HIP.
However, both scenarios have the first steps in common, before the peer answers the
Base Exchange. We must notice that the local or peer address can change during
the communication, requiring a new Base Exchange.

shows a first scenario where the peer host is HIP enabled. We describe
the outbound packet processing below.
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User
1. Run client app
Application v4
2. Connect(IP)

Transport
3. IPTABLES -1 OUTPUT 0.0.0.0/0 -j QUEUE

5. Trigger base exchange
6. <OK,HIT_PEER>

7. Map <HIT, LSI, IP> C 4. Firewall HIPD

l 8. Packet reinjection (LSI->HIT)

IPSec

Network

Figure 4.4: Opportunistic design: Peer HIP-aware

1. The user or administrator runs an application.
2. The application layer calls connect(IP).
3. The hipfw intercepts the packet.

4. The hipfw checks its local database. If the destination address is already
associated with a HIT, hipfw goes to the final step.

5. The hipfw triggers the Base Exchange in opportunistic mode with a HI'T peer
empty value. In this step, we must notice Base Exchange can use the TCP

extension discussed in [chapter 2]
6. Base Exchange is completed successfully and returns the peer HIT value.

7. The hipfw maps in its local database the peer HIT, the peer LSI and the peer
address.

8. The ESP stack encrypts the packet and sends it to the peer host.

shows a second scenario where the peer host is not HIP-enabled. We
describe the outbound packet processing below.

1. The user or administrator runs an application.
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2. The application layer calls connect(IP).
3. The hipfw intercepts the packet.

4. The hipfw checks its local database. If the destination address is already
associated with a HIT, we skip to the final step.

5. The hipfw triggers the Base Exchange in opportunistic mode with a HIT peer
empty value. In this step, we must notice Base Exchange can use the TCP

extension discussed in [chapter 2

6. Base Exchange is not established, therefore the peer does not support HIP.
7. In order to avoid HIP-capability detection the hipfw maps the IP address in
its local database, indicating with a flag that the peer is not HIP-enabled.
User
l 1. Run client app
Application v4
2. Connect(IP)

Transport

3. IPTABLES -1 OUTPUT 0.0.0.0/0 -j QUEUE

7. IPTABLES -I OUTPUTC 5. Trigger base exchange
- 4. Fi | «———————* HIPD
dstIP ACCEPT Jrewa 6. Timeout/TCP_SYN_ACK
Network

Figure 4.5: Opportunistic design: Peer not HIP-aware

We must clarify the second step in [Figure 4.5 and [Figure 4.5 where the IP is re-
ferring to an address different from a HIT or an LSI. Our implementation of the
opportunistic mode allows to fallback to non-HIP communications if the peer does
not support HIP, but using the LSI identifier, we assume that the peer supports HIP,
and, if the connection with HIP is not possible, the connection should be rejected.

At the input side, the receiver of a packet should analyze the source and destination
identifiers to decide when to apply LSI transformation.



Chapter 5

Implementation

Our LSI implementation is based on the HIPL implementation. Originally, HIPL
supported only kernel-based IPSec. The IPSec implementation of HIPL was sup-
ported in the userspace by the end of this thesis. This feature is relevant for the LSI
module because both implementations modify hipfw component. Then, there is a
need to integrate the two extensions.

HIPL is divided into five main components. The HIP daemon (hipd), the HIP
configuration tool (hipconf), optional HIP socket handler, the BEET extension for
[PSec and the optional firewall (hipfw). We have changed the hipd, hipconf and
hipfw components.

In this chapter, we show different scenarios which illustrate the interaction between
the different software components using sequence diagrams. In order to simplify,
the full execution trace is not shown. Instead, we focus on the most relevant func-
tions. Furthermore, the reader should not be confused if he or she tries to find the
corresponding functions from the code because we have used shorter names here.
The reader must also bear in mind that function parameters have been omitted for
simplicity.

5.1 Local Scope Identifier

This section studies the data structure for LSIs in HIPL implementation. Secondly,
we explain implementation details about the different techniques HIPL uses in order
to generate this identifier and to link it to a virtual interface.

37
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5.1.1 Data Structure for LSIs

We introduce a new identifier in the HIP protocol. As shown in an LSI
is based on the in_addr structure.

typedef struct in_addr hip_lsi_t;

Figure 5.1: The Isi structure

This structure handles Internet IPv4 addresses and it has a variety of representations
in the different systems because of a union. The common field is s_addr, a 4-byte
number where each byte represents an IP address digit.

5.1.2 LSIs on the Virtual Interface

In HIPL, the host can have up to four HITs with each associated with the cor-
responding LSI. The LSIs and HITs are contained in dummy( virtual interface to
provide routes to the linux networking stack. There are three ways of configuring it:

1. Toctl calls made (as ifconfig handles it).
2. Netlink calls (as iproute handles it).

3. Through the /proc filesystem.

In the LSI implementation, we used the netlink library to populate the device with
the respective LSIs and the ioctl library for removing them. It is important to notice
that although netlink supports more than one IPv4 address without creating aliases,
ioctl does not support it. The example in shows the difference between
the two commands for creating a multihomed device.

ip addr add <networkaddress>/<prefixlength> brd + dev <device>

ifconfig <device>:<aliasnumber> <address> netmask <netmask> up

Figure 5.2: Command line syntax for iproute and ifconfig to bring up a device with
an address
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5.1.3 LSI Generation

We already explained the three possible ways LSIs are generated in Here
we will dwell on the implementation details.

Manual configuration

The hipconf tool is a command line interface for hipd. This tool parses the com-
mands to the hipd and it has been extended in order to support LSIs. The user can
specify the LSI in the hipconf command, otherwise the daemon will generate the LSI

on the fly, as shown in

hipconf hipd @db

hipconf add map HIT IP [LSI]

hip_add_peer_map()

hip_add_peer_info()

Figure 5.3: Hipconf add map sequence diagram

An example of how to use the hipconf tool for this purpose is shown below in

7

>hipconf add map 2001:001b:2bld:55£f7:798a:£f476:af0a:£826
128.214.114.58 1.0.0.7

>hipconf add map 2001:001b:2bld:55£f7:798a:£f476:af0a:£826
128.214.114.58

Figure 5.4: A typical execution of the command hipconf add map

Automatic configuration

Automatic configuration consists of creating the mapping between the peer identi-
fiers without using the hipconf tool. For this purpose, the user or administrator
must add the HIT and optionally the LSI to the HIP resolver file and the IP address
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in the hosts file. The automatic configuration was already working for IPv6, although
the LSI information was not read from the resolver. Currently this functionality is
supported. And we added too the automatic configuration for LSIs which is depicted

in [Figire 5.3

(Applicationj ‘Transport Layer ‘ ‘ Firewall ‘ ‘ hipd ‘ Resolver @ [P%:ﬁé%:i

connect(LSI)

hip_trigger_bex()

get_endpoint_info()

] LS|
j hip_generate_LSI()

hip_add_peer_|info()

send_i1()

Figure 5.5: Automatic peer information configuration sequence diagram

Initially, the user runs a legacy [Pv4 application using the LSI identifier, whose pack-
ets are captured by the firewall. The firewall detects that the Base Exchange was
not established for the peer LSI. Therefore, it triggers the Base Exchange and the
hipd calls the resolver in order to look up the peer host information. Once the hipd
has the information, this is added to the HADB and afterwards the Base Exchange
is set up with the peer host.

DNS Proxy resolution

The DNS Proxy extension for HIP provides HI/HIT-based look-up service for the
end-host. Unlike the rest of the implementation, this extension is implemented with
Python. It intercepts DNS requests from an end-host and returns a HIT instead of
an [P address if it finds one.

5.1.4 Modified Database Structures

HIPL has mainly two databases which store information about the local host identi-
ties and the current associations with the different peers. In order to support LSIs,
we modified these two data structures.
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Host Identity Database
The Host Identity Database (HIDB) contains the localhost Host Identities and re-

lated information, as shown in [Figure 5.6 The HIDB contains four local HITs/HIs
and also LSIs with each HI tied to an LSI.

hipd initializes the database upon startup.

struct hip_host_id_entry {
struct hip_lhi 1lhi;
hip_1si_t 1si;
struct hip_host_id xhost_id; /* allocated dynamically */
struct hip_rlentry *rl; /* precreated Rls */
struct hip_rilentry x*blindrl; /* pre-created Rls for blindx/
/* Handler to call after insert with an argument, O if OKx/
int (*insert) (struct hip_host_id_entry *, void **arg);
/* Handler to call before remove with an argument, O if OKx*/
int (*remove) (struct hip_host_id_entry *, void **arg);
void *arg;

Figure 5.6: HIDB record structure

Currently, hipd generates the local LSIs statically when it starts running. As shown
in hipd stores LSIs statically in an array and copies them to the HIDB
with the corresponding HIT. Furthermore, the first LST ("1.0.0.1") is always the
default LSI corresponding to the default HIT.

static char *1si_addresses[] = {"

Figure 5.7: HIDB static initialization

Host Association Database

Independently of the HIDB, there is a second database called Host Association
Database (HADB). Its objective is to record HIP-related state information about
peer hosts. The database is indexed by the pair of local and peer HIT. The LSI
extension includes the related lsi pair, composed by the local and the peer LSIs, to



CHAPTER 5. IMPLEMENTATION 42

the entries in the database.

5.2 Packet Processing

The hipfw daemon already handles data plane interception and it was therefore a
natural place also to implement LSI processing. Furthermore, in order to preserve
modularity, the LSI hipfw related functions are in a separated module, which con-
tains functions that handle incoming and outgoing LSI packets and the ones that
reinject the packet again to the network stack. The LSI module of hipfw caches
information about the peer HITs and the peer LSIs. hipfw uses this information in
order to trigger the Base Exchange or not. In case the Base Exchange is already
established, hipfw gets the correspondent HIT pair from the database.

Next, we present some sequence diagrams from the point of view of a client-server
model.

5.2.1 Output Packet Processing

When a datagram traverses through the network stack, hipfw captures it with the
following rule:

iptables -I OUTPUT -4 1.0.0.0/8 -j QUEUE

The hipfw output handler chain consists of hip, esp and Isi handlers amongst some
other handlers. As shown in the lsi module checks the state of the Base
Exchange in the firewall database (fwdb). If the answer is negative, it triggers the
Base Exchange. Otherwise, hipfw reinjects the packet. The reinjection process con-
sists of replacing the IPv4 header with an IPv6 header where the destination and
source addresses correspond to the HITs associated to the LSIs. hipfw handles the
reinjection using raw sockets.

5.2.2 Incoming Packet Processing

In this subsection, we focus on inbound packets at the server side. As well as
during the outbound process, hipfw captures incoming HIT-based packets using the
following rule:

ip6tables -I INPUT -d 2001:0010::/28 -j QUEUE
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[Application] ‘ Transport Layer ‘ ‘ Firewall ‘ LSI_Packet @ IPSec hipd

1. connect(LSI)

3. hip_fw_outgoing_lsi()

4.1is_lIsi?()

5. modify_header |and_reinject() TRUE

o

. hip_trigger_bex() FALSE

7. set_hit_lIsi()

Figure 5.8: Outgoing sequence diagram on the client host

The hipfw input chain contains the same handlers as the output chain. We have
been inspired by the mechanism used by netstat application. hipfw looks up the
transport protocol-related files placed in the directory /proc/net. If hipfw finds the
destination port in the file "/proc/net/tcp6", it does not change the packet, other-
wise hipfw changes the IPv6 header to an IPv4 header which includes the LSIs and
reinjects the new packet to the stack. Then, the application receives the reinjected
packet. Because reinjection with "mangle" does not support interfamily transfor-
mations, the kernel queues the packet in the outgoing queue instead of the inbound
one, consequently the process requires to check the identifiers in order to decide the
right direction. The incoming scenario is depicted in where we assume
that the transport protocol is TCP.

Firewall ‘ LSI_Packet ‘ ‘ Iproc/net/tcp6 H Transport Layer ‘ ‘ IPSec ‘ [Application ]

1. hip_fw_incoming_hit()

2. get_family()
3. I AR R I SRR ERREEEAARAAS NSRS g

AF|INET

Figure 5.9: Incoming sequence diagram on the server host

5.3 Protocol translation mechanism

As we already explained in the previous section, the packet suffers a translation
mechanism from [Pv4 to IPv6. In this section, we dig into this process, showing the
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consequent header transformations.

The change of IP header affects the transport layer protocols and ICMP. Therefore,
the unique and main change which suffers the header of these protocols is the recal-
culation of the checksum field, since these header protocols are based on an overlay
header which contains the IP addresses.

As we are using raw sockets, with the outgoing packets is the kernel which builds
the new IP header. Then, the transport layer changes are enough. However, we had
to build the IPv4 header for incoming packets whose destination application only
supports IPv6. The reason is that bind function can not bound the source address
to the socket because this IP address is from the peer. In this case, we further sim-
plified the process not translating extensions or options. For ease of implementation,
the header length and total length fields are re-computed. The address fields are set
according to the address mapping between LSI and HIT. We directly copied to TTL
the value from the Hop Limit field in IPv6.

Unlike the above-mentioned fields, there are some fields where there is not an equiv-
alence manner to express the information. This is the case of the quality of service or
flow-related fields. This is because the semantics in the IPv6 context for the quality
of service differ from the ones used by IPv4 [B5]. Then, we decided to set these fields
to a default static value, e.g. the value of zero for the type of service field in the
IPv4 header.

As the MTU value for the dummy0 interface is limited to 1280 bytes, there is no
fragmentation and in consequence we did not have to deal with the translation of
fragments.
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Analysis

Firstly, this chapter presents the performance evaluation configuration. Secondly,
we analyze the results with different charts and tables for TCP and ICMP protocols.
In addition, we study other related problems that we found during the analysis and
testing processes. We introduce these topics in the following order: LSI address
space, Maximum Transfer Unit, referral problem and LSI compatibility with other
extensions.

6.1 Performance Evaluation Configuration

In this section we present configuration of the performance measurements in different
scenarios. Furthermore, we explain the test platforms and software used.

6.1.1 Test Platforms

We performed our measurements on two machines following the client-server schema.
The client was the initiator and the server the responder. We used the hipl-
userspace—2.6—patch-1817 version in both machines for testing LSI, HIT and Op-
portunistic System Based scenarios performance. We connected the machines using
a direct 1 Gbit link. The MTU default value in the dummy interface was 1280 bytes.
Below in [Table 6.1] we describe the hardware and operative system characteristics
on both machines used during the tests. The network layer is always IPv4 and the
upper layer address is IPv4 when it is applicable.

6.1.2 Test Software

We used Iperf version 2.0.2 for the TCP throughput testing tool [I8]. For a TCP
connection, Iperf shows the bandwidth and throughput, and by default sends an

45
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Initiator Responder

Ubuntu Hardy 8.04 64-bits Ubuntu Hardy 8.04 64-bits

Kernel 2.6.25.8 (64-bits) and BEET | Kernel 2.6.25.8 (64-bits) and BEET
PATCH PATCH

2048 KB 4096 KB

Intel(R) Core(TM) 2 CPU T6400 | 2 x Intel(R) Core(TM) 2 Duo T7300
2.13GHz 2.00GHz

Table 6.1: System configuration of the testing environment

S8KB array for 10 seconds. In addition, we tested the performance of the system
call connect () with the application conntest-client-hip which is included in hipl-
userspace—2.6—patch-1817. In both test scenarios, we used the tool hipconf rst all in
order to reset the established connections. Therefore, we can compare the increase of
time when hipd has to establish a new connection with a peer and the time needed
during normal traffic, when both hosts have already set up the connection.

We tested the ICMP and ICMPv6 protocols using the ping and ping6 tools [47]. The
ping program sends an ICMP echo request message and expects an ICMP echo reply
to be returned. In addition, it can be used to measure the Round-Trip Time (RTT)
to a host. We show the arithmetic mean and the standard deviation for the RTT
values captured. We show a testing scenario of 20 samples for LSI, HIT, System
Based and User Based Opportunistic Modes and finally a plain ICMP scenario.

6.1.3 Test Procedure

We used the following test plan to conduct our measurements. We tested TCP and
ICMP running hipd and hipfw on both machines. A desktop computer acts as
the initiator and a laptop as the receiver, where each measured result consists of
20 samples. Firstly, we focus our tests in the throughput during data traffic using
TCP over ESP where we compare the performance of LSIs, HITs and the user-based
opportunistic mode. Finally, we tested I[CMP and ICMPv6 protocols with LSI and
HIT identifiers, using the opportunistic mode and without a HIP environment.

6.2 Results and Analysis of the Performance Measure-
ments

This section shows the results that we obtained with different scenarios following the
configuration that we explained in the previous section. We focus on TCP studying
its throughput and connect performance. Finally, we move to the ICMP results.
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6.2.1 TCP Throughput

In [Figure 6.1] we illustrate the average and the standard deviation of the throughput
of data during HIP traffic. The x axis presents different modes of HIP and the y
axis displays the throughput of the communication in Mbits/s.

TCP throughput during data traffic
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Figure 6.1: Throughput of different HIP modes

The chart shows that the average value for LSIs is 94 Mbits/s with a standard devi-
ation value of 1.3 Mbits/s. The average throughput for HITs is 300 Mbits/s with a
standard deviation of 5.1 Mbits/s. In the opportunistic mode scenario, the average
of the user-based mode is 296 Mbits/s with a standard deviation of 5.0 Mbits/s and
with the system-based mode 54 Mbits/s with a standard deviation 0.7 Mbits/s. A
plain TCP connection has an average value of 942 Mbits/s with a standard deviation
of 0.3 Mbits/s. As the measurements show, a communication under HIP achieves the
best results when it uses the HIT identifier, followed by the user-based opportunistic
library, although the difference in throughput between HIT and library-based scenar-
ios is almost non-existent. Furthermore, LSI has almost twice as good performance
as the system-based mode. The LSI identifier and system-based modes are three
times slower than HIT and library-based modes in processing and delivering data.
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6.2.2 TCP connect

In [Figure 6.2 we illustrate the average and the standard deviation of the system call
connect (). In our testing environment, it is the program conntest-client-hip that
calls this function. The x axis represents different modes of HIP and the logarithmic
y axis displays the time to complete the Base Exchange and the TCP handshake in
ms after the application calls the system call connect ().

TCP response time values for connect() system call
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Figure 6.2: TCP connect() performance

The results we obtained, without the logarithmic scale on the y-axis, show that the
average value for LSIs is 3000 ms with a standard deviation value of 2 ms. The
average time for HITs is 47 ms with a standard deviation of 2 ms. This time consists
of the time to complete the Base Exchange and the TCP handshake. In the oppor-
tunistic mode scenario, the average of the user-based mode is 46 ms with a standard
deviation of 3 ms. Each of these measurements set up the connection. As we can
observe with the following measurements, this process highly increases the response
time of the system call. Once the state is established, the average value for HITs,
called HIT old in the chart, decreases until 0.3ms with a negligible standard devi-
ation. The same goes for the opportunistic user-based mode, named Opportunistic
Library old in the chart, where the second scenario shows an average value of 0.7 ms.

This test shows that the LSI has a surprisingly bad performance with a constant
3 seconds delay. This is related with the initial value of TCP’s Retransmission
Timeout (RTO) timer. In a Linux operating system, the initial RTO is 3 seconds by
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default. When the SYN packet does not arrive to the server or the SYN ACK to the
client, it causes a timeout with the initial RTO value [A0] [59]. The effect of RTO in
throughput [3] is:

e The sender transmits few packets til it expires.

e Sender shall restart in slow start mode with the initial value of the congestion
window (cwnd).

In the HIPL context, this is due to LSI implementation dropping data packets un-
til both peers establish the Base Exchange. Therefore, there are multiple packet
losses which cause the RTO. The [3] introduces how to avoid RTO caused by mul-
tiple packet losses with the modified fast recovery algorithm of TCP New Reno or
selective acknowledgement (SACK) option and it explains how to avoid RTO with
retransmitted packets. Both methods should be applied in our context in order to
avoid RTO.

On the other hand, this behaviour is not present in the library implementation be-
cause it blocks the socket calls until the host establishes the Base Exchange with the
peer. Then, no packets are lost [36].

6.3 ICMP

The results of the different tested scenarios are shown in [lable 6.2

The mean RTT is 0.261 ms without using HIP in our testing scenario, where the
deviation of the sample is 0.13 ms. The mean RTT using LSIs is 0.658 ms with a
standard deviation of 0.044 ms. The mean RTT using HITs was 2.424 ms with a
standard deviation of 0.147 ms. The system-based opportunistic mode has a mean
RTT value of 1.119 ms with a standard deviation of 0.097 ms.

Scenario Average Deviation
Plain ICMP | 0.261 ms 0.13 ms

HIT based 0.319 ms 0.030 ms
LSI based 0.658 ms 0.044 ms
Sys-based 1.119 ms 0.097 ms
Opp. Mode

Table 6.2: RTT values in a HIP and plain communication

Results show that a HIP communication increases the RT'T. As we can observe, the
RTT performance is twice as good with HITs instead of LSIs. Furthermore, the
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system-based opportunistic mode is almost four times higher than the HIT identifier
and twice the LSI average.

6.4 List of Supported IPv4 Applications

We tested ping, netcat, ssh and ftp with LSIs during the development of the LSIs.
We used the LSI directly in the application layer because DNS Proxy support for
LSIs is not yet available.

6.5 LSI Address Space

We decided to use a fixed address space in the range 1.0.0.0/8. This address space
is unallocated by IANA [I6] which means it can not be used by NATted networks
or the LSI identifier. However, we can take into account that the use of LSI is local
in contrast to NAT addresses which go on the wire. Below we present the potential
problematic scenarios.

Imagine a host with an application calling connect() with an LSI. Moreover, the host
also has assigned an IP address which corresponds to a private IPv4 address in the
LSI range. The hipfw will capture the packet because of the iptables rule and will
change the LSIs to the HITs. This scenario does not present any problem unless the
destination address, which goes on the wire, is also in the LSI range. In this case,
our design creates an infinite loop, because hipfw translates the LSI to a HIT and
afterwards to an IP equal to the LSI prefix, thus hipfw captures the packet again
by the LSI output rule in iptables.

On the input side there is no problem. The packet just arrives to an interface such
as eth0.

We present three possible solutions for avoiding LSI collisions with NAT namespaces.
Firstly, we propose the static allocation scheme, reserving the 1.0.0.0/8 address space
for HIP protocol. The second alternative is to use 1.0.0.0/8 and allow IANA to
allocate each address individually. The third alternative is to perform the LSI to
HIT translation higher in the TCP/IP stack, consequently a mechanism realizes the
conversion before the packet reaches the kernel routing table. This last solution
implies kernel changes or interposition libraries.
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6.6 Maximum Transfer Unit and LSIs

The maximum size of a packet is theoretically determined by the IP protocol. Specif-
ically, the maximum size of an IPv4 datagram is 65535 bytes. This is because of the
16 bits value for the len field in the IPv4 header. The maximum size of an IPv6
datagram is also 65575 bytes because of a 16 bits field in the header. However, layer
3 in the OSI model defines the Maximum Transfer Unit (MTU) which represents
the maximum size of an IP datagram that the network device can handle without
fragmentation. The common MTU for an Ethernet device is 1500 bytes, and it is
the value used by default with the dummy( virtual interface. When the frame size
is bigger than the MTU, the packet must be fragmented.

We observed a problem using LSIs when transmitting a file with size of 1408 bytes
or larger. As an example, let us consider an application that sends a file of 1500
bytes. The hipfw captures a 1500 bytes packet where:

1. The IP header is 20 bytes, as we do not set up any option.

2. The IP payload is 1460 bytes, where 32 bytes correspond to the TCP header
and the remaining 1428 bytes to the data.

As shown in the transformation process from IPv4 to IPv6 increases the
size of the packet 20 bytes. After the IP translation is performed, we also add the
ESP header to the packet, further increasing the final packet length.

The change of the MTU value allowed us to receive the total amount of data that
the client requested in a passive FTP connection where the client was using HITs
and the server LSIs.

ESP + (IPV6 — IPv4)
3

IPv4 Header TCP Header FTP-DATA

IPv6 Header ESP TCP Header FTP-DATA

Figure 6.3: LSI-to HIT conversion and effects on MTU

6.7 TUN/TAP mechanism

Instead of using a virtual interface dummy0, we could use a TUN virtual tunnel
device where the outgoing LSI packets can be redirected. The TUN device makes
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available the received packets for the hipd through the /dev/net/tun device. When a
new packet is read from the virtual device, the LSI can be translated to the HITs and
afterwards transformed into an ESP packet. The advantage of this method is that
the userspace locates the buffer where the virtual device queues the packets, thus
the buffer can be larger than in the kernel space. Afterwards, we can continue using
raw sockets for packet reinjection into the IP stack. TUN/TAP is also more portable.

6.8 The referral problem

Currently, IP addresses are used in different ways by different applications. Between
the possible categorizations [, we focus on the following:

e (Callbacks. The application at the localhost retrieves the IP address of the peer
and the peer uses it to later communicate with the same localhost.

e Referrals. In an application with more than two hosts, host B obtains the IP
address of host A and passes that to host C. After that, host C uses this IP
address to communicate with host A.

The deployment of applications carrying IP addresses in the data stream creates
some problems in NATted environments as well as with LSIs. Some examples of
these applications or protocols are FTP or Simple Network Management Protocol
(SNMP) MIBs for configuration [IT]. In the next subsection, we concentrate on the
FTP case.

6.8.1 FTP and Referrals

File Transfer Protocol (FTP) [5I] is a network protocol used for storing and re-
trieving files over TCP connections. FTP uses two separate TCP connections for
communication, one for data and one for control. The FTP server listens by default
on port 21 for the control channel, which transfers FTP requests and replies. On
the other hand, the FTP server listens by default on port 20 for the data channel,
which transports files. There are two types of data transfers:

1. Active. The client specifies to the server the IP address and port number where
the server should connect back. The server port is 20. The client program sends
the PORT command to the server specifying the IP address and port number
where it should connect back. If the client host is using an IPv6-enabled FTP,
the command is EPTR.

2. Passive. The client asks the server for the IP address and port number where it
can connect and receive the data. The client program sends the PASV command
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to ask the server which IP address and port it must connect to. If the server
host uses an IPv6-enabled FTP, the command is EPSV. This mode is usually
the one used by default in web browsers.

The FTP protocol uses both modes including the address and port within the pro-
tocol, creating the callback problem. In particular, the FTP PORT command and
the PASV responses include the IP address in ASCII in the FTP control packet
payload [23]]. We found in the LSI scenario that the application treats the LSIs as IP
addresses, and as we have mentioned in this thesis, this identifier has a local scope,
meaning initiator and responder can not have the same LSIs. Thus, the peer host
application has no system context to resolve the LSI back to a HIT or an IP address.

We studied referrals with FTP using hipl-userspace—2.6—patch-1661 version.
shows that when the application uses HITs on both sides, there is full support for
both FTP modes. We explain below the scenario when the application uses LSIs on
both sides.

Client Server Active Passive
HIT HIT OK OK
HIT LSI KO OK
LSI HIT KO KO
LSI LSI KO KO

Table 6.3: Results obtained using Iftp 3.6.1 on the client side and proftpd 1.3.1 on
the server side

We now show an example where HIP fails due to the referral problem. We want to
set up a HIP-enabled FTP session between two hosts. The FTP server uses Proftpd
version 1.3.1 and the client uses Iftp version 3.6.1. We show an output example when
we run the client and try to list the directories of the peer machine.

ftp -v 1.0.0.7

Connected to 1.0.0.7.

220 ProFTPD 1.3.1 Server (ProFTPD Default Installation) [1.0.0.1]
Name (1.0.0.7:tfinez):

331 Password required for tfinez
Password:

230 User tfinez logged in

Remote system type is UNIX.

Using binary mode to transfer files.
ftp> 1s

500 Illegal PORT command

ftp: bind: Address already in use
ftp> passive
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Passive mode on.

ftp> 1s

227 Entering Passive Mode (1,0,0,1,213,223).
ftp: connect: Connection refused

As we can see, we obtain a control connection to the server because the connec-
tion establishment is done via TCP. This results in error 500 and we solve it using
passive mode. Afterwards, when we retry the 1s command, the server refuses the
connection. As we can see, the server address is 1.0.0.1. This is the default LSI
identifier value of the server, but in the client context this LSI is its own LSI and
not the server one, as we show with the netstat output at the client:

Proto Recv-( Send-Q Local Address Foreign Address State
tcp 0 01.0.0.1:46191 1.0.0.7:21 ESTABLISHED

This is the netstat output at the server:

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 01.0.0.1:21 1.0.0.5:46191 ESTABLISHED

As we can observe, there is no relation between the LSIs. Therefore, when the LSIs
are passed on the protocol payload, we lose the control to determine the source and
destination addresses.

It could seem odd that the case where HITs are used in the client and LSIs in the
server works in passive mode. The explanation is that the server is responding with
the EPSV command where only the port is specified and not the server address. The
active mode in this scenario does not work because the server does not support the
IPv6 network protocol, thus the client receives the error 522. The reason could be
because the server receives the EPTR command with the HIT and it does not know
how to manage the IPv6 address because the server is bound to an IPv4 address.

In addition, FTP can use referrals instead of callbacks. This feature also represents
a problem, although referrals with F'TP are rarely used. A possible solution is that
hipfw can dynamically modify the contents of the control connection, rewriting the
LSIs in the packet with the right LSI pair in the host. Otherwise, the user or admin-
istrator can use a similar application, e.g. sftp. This application is the secure form
of FTP. It is an FTP based on ssh. As the last option, the user or administrator can
use an [Pv6 FTP server because the HIT identifier works properly with both modes.



CHAPTER 6. ANALYSIS 95

6.8.2 Solution for FTP using LSIs

As we pointed out, one solution is to modify the LSI contained in the payload by the
one that has a context in the local machine. We already explained that an incoming
packet is decrypted and afterwards the packet containing the HITs is captured by a
rule in hipfw. If the destination application is IPv6 there is no problem, otherwise
we need to verify when the application protocol is FTP. In this case, not only the
hipfw must translate the IPv6 header to an IPv4 one, containing the LSIs, but also
the hipfw must check the payload in order to change the LSI to the peer LSI value
represented locally according to the corresponding ESP tunnel.

6.9 LSI Compatibility

The LSI module must be compatible with the rest of the extensions that include the
HIPL implementation. This section focuses on the most interesting compatibility
issues related with this master thesis: normal firewall access control and userspace
IPSec.

6.9.1 Normal Firewall Access Control

The LSI design is based on capturing and queuing packets that contain LSI addresses
to change this identifier by its correspondent HIT. The hipfw carries out this capture
process with new rules defined with iptables. Basically, there is a rule for outgoing
packets specifying the LSI pattern and another rule for incoming packets specify-
ing the HIT pattern. The input rule that captures HITs, is compatible with hipfw
access control because the LSI module modifies the packet only when the destina-
tion application only supports IPv4. Otherwise, hipfw processes the packet and the
behaviour is the same as before adding the LSI support. On the other hand, the
output rule affects only LSI traffic because as we already discussed, the LSI address
space is unassigned by IANA. However, it could cause some problems related with
misbehaving NATs.

6.9.2 Userspace IPSec

The userspace IPSec extension was implemented almost simultaneously as the LSI
extension. The userspace IPSec design relies on the same base as LSIs. Both im-
plementations must be compatible. Userspace IPSec relies on getting HIT-based
outbound packets as input and non-HIT inbound packets as output. [Fig 0.4
shows the processing of the outbound packet. As we can see, both extensions mod-
ify and reinject the packet again. It must be noticed that, while the LSI extension
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only modifies the IP header, the IPSec extension is a bit more tricky because it
encrypts the data and adds the ESP header using the BEET mode.

Firewall

LS extension IPSec extension

[ L?I H HIT HReianction] [ HIT H IP@ HReinjection}

i

. .
] !
iptables LSl rule iptables HIT rule

Figure 6.4: Firewall outbound packets schema including LSI and IPSec extensions

Next, we show in the input processing. As we can see, now hipfw applies
the userspace IPSec extension in the first place in order to decrypt the packet and

to add the HITs into the IPv6 header. Furthermore, we must not forget that hipfw
translates HITs to LSIs only if the destination application does not support IPv6.

Firewall

IPSec extension LS extension

[ P @ H HIT HReinjeclion] [ HIT J = LS 1= Renjection |
; : L= T
: )

y !
iptables ESP rule iptables HIT rule

Figure 6.5: Firewall inbound packet schema for LSI and IPSec extensions

6.10 Opportunistic Mode

This section discusses the advantages and disadvantages between system-based and
library-based opportunistic modes. Then, we compare the TESLA approach with
the opportunistic system library.

One of the main disadvantages of the opportunistic library is the lack of system
call implementation. As a consequence, HIPL supports applications in this scenario
depending on the system calls that the running application uses. Below we enumerate
the supported system calls in the library-based opportunistic mode:

1. socket

2. bind
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3. connect

4. send, sendto and sendmsg
5. recv, recvfrom and recvmsg
6. accept

7. write and writev

8. read and readv

9. close

10. listen

11. poll

Although the most used system calls by applications are wrapped, there are still other
important functions missing, e.g. setsockopt, getsockname, getpeername, clone, dup,
dup2, fclose and select from the current implementation. According to this approach,
the user must trace the system calls [b6] made by the application in order to find the
not supported ones. This objective becomes more complicated when the source code
is not available. On the other hand, the system-based opportunistic mode solves
this problem because there is no interception library. In this case, it is the hipfw,
which captures the packets to trigger the opportunistic mechanism. The library
fully supports the TCP protocol, but the UDP [A8] and ICMP protocols are not yet
supported. As we can see, the system-based mode moves the binding from system
calls present in the library below the TCP layer.

The second problem that the user library model introduces is a conflict between
other LD PRELOADs. The point to solve is to decide which library the applica-
tion must process first in case we have another library which is already modifying
the same system call as the opportunistic library. Thus, we must take into account
how to manage chaining of the libraries in the LD PRELOAD approach.

With the user library from the TESLA we could use the approach which we in-
troduced in TESLA and the library-based mode share the interposition
library schema. But TESLA provides an upper layer of abstraction because the ser-
vice operates in network flows rather than sockets. However, TESLA is also based
on the LD PRELOAD approach, adding the disadvantages that we described before.
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Conclusions

In this thesis, we focused on supporting legacy IPv4 applications in legacy systems.
Despite IPv6 being designed to replace IPv4 in the long term, the reality is that IPv4
will live together with IPv6 during quite a long period. Another important consid-
eration is that there will always be IPv4-only legacy applications whose source code
is not available or written in an archaic programming language. Modifying exist-
ing applications or rewriting new ones is expensive. By using LSIs provided by HIP,
even legacy applications can use IPv6 without modifying them, and also benefit from
other features provided by HIP.

We designed and implemented LSI support to enable interoperability between IPv4
and IPv6 applications in HIP for Linux (HIPL), the implementation was selected as
the reference HIP implementation.

Apart from the design and implementation of LSIs, we conducted tests on the per-
formance with different HIP identifier scenarios and the two different approaches
to the opportunistic mode library. Different tests have been carried out using the
following protocols: TCP and ICMP. The LSI and system-based opportunistic mode
are currently less efficient in our code than the userspace library-based approach.
The implementation does not yet have packet queues and threads which explains
the difference in performance. In addition, the LSI module realizes input/output
queries per each packet received, in order to decide which IP version the destination
application supports, increasing the processing time of the packet. We also experi-
enced a 3-second delay per each measurement during a TCP connection using LSIs.
Furthermore, the library-based approach faces some practical problems.

We found some problems with referrals and callbacks. The problem is related to the
definition of LSIs, which are limited by its local scope. We studied these scenarios
deeply with F'TP. We showed that the communication with HI'Ts at both sides works
as well as when the FTP client application is IPv6 and the FTP server uses IPv4

28
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in passive mode. During this study, we tried to transfer high quantities of data,
realising that the MTU value used by default in HIP had to be changed.

In addition, we reviewed the compatibility with userspace IPSec and the normal
firewall access control. As a result, we provided some guidelines for future work.

We proposed to move the opportunistic library from the user to the system level
reusing the LSI design. The system level approach solves some current bugs in the
opportunistic library, removes library dependency problems and increases the num-
ber of applications that HIP supports.

In addition, we compared our approaches with the TESLA approach. TESLA has
in common with the opportunistic user library that both of them use the interposi-
tion library mechanism. TESLA provides a high-level abstraction to session services
and it allows to compose a chain of services. However, TESLA may have the same
inherent limitations as the user-based opportunistic library.

To recap, the LSI-based and system-based opportunistic mode approach seem promis-
ing ways to facilitate HIP deployment and ease the transition towards IPv6-based
networks.



Chapter 8

Future Work

The design and implementation efforts have brought up some future research and
development ideas that we describe in this chapter. Initially we discuss future work
related with LSIs and afterwards that related with opportunistic mode. Finally we
discuss the future guidelines for integrating, in a compatible way, the different ex-
tensions in the hipfw module.

8.1 LSI Future Work

This section focuses on the related issues with this project that need future work.

8.1.1 Assign an Address Space

Our proposal defines a fixed LSI prefix, but there exist active discussions on this topic
because IANA has not assigned the range 1.0.0.0/8 for LSIs. In the future, there may
be a need to reserve a name-space for LSIs. This option is not very feasible at the
moment because HIP is not deployed widely yet. On the other hand, we can think
that the approach where the mapping between LSIs and HITs is done on higher lev-
els of the TCP/IP stack is better. However, this option implies kernel modifications
which require more effort and have to be accepted to the linux kernel. Therefore,
we decided to implement the other approach that is more suitable for legacy systems.

8.1.2 Support DNS Resolution

DNS Proxy support for LSI was not implemented yet during the writing of this the-
sis. When the application makes an AAAA request, the DNS Proxy module returns
a HIT as an AAAA response if there is a HIP RR. If the application makes an A
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request and there is a HIP RR, the DNS Proxy module returns an LSI as an A
response. The allocated LSI can be received using the output of "hipconf get ha
all/HIT".

8.1.3 Withdraw Packets Loss

We must provide a mechanism to queue the packets until the hosts establish the
Base Exchange. The current LSI implementation drops the packets until the | es-
tablishes the Base Exchange, creating an RTO. This approach is detrimental for the
LSI performance. One approach can be to block the initiator application after the
first query until a positive answer is obtained from the Base Exchange. The loss of
packets is not a problem for the TCP protocol because it will retransmit them again,
but the same does not apply to UDP or ICMP.

The reinjection mechanism used with LSIs needs to be improved because it adds
extra time during the processing of the packet. Namely, userspace IPSec, system-
based opportunistic mode and LSI modules immediately reinject the packet after
processing it, whereas it would be more efficient for all of them to modify the packet
and only then to reinject it. However, this did not work because of interfamily trans-
formations.

8.1.4 Solve the Referral Problem

Applications using referrals or callbacks with LSIs have to be supported in some way.
For example, hipfw should implement referral conversion for FTP control packets,
similarly to what NAT devices and Application Layer Gateways (ALGs) do today.
As an alternative solution, the system-based opportunistic mode could be used to
handle referral problems. This approach does not break the FTP RFCs and avoids
modifications to FTP implementations.

In addition, there are many applications that actually have addresses to application
layer headers, although they do not necessarily use them. For example, IM protocols,
IMAP, POP, SIP or HTTP. If these protocols have IPv6-based applications, the user

or administrator can use HITs.

Unfortunately, the reality is that many IPv6-based applications are still being run
without IPv6 support. In this case, we must realize whether the application is just
logging the IP addresses but not necessarily using them for anything. In this case,
the LSI module works although the application logs the wrong LSI values. The re-
ferral problem brought up that more tests must be done with a wide variety of IPv4
applications to find out possible problematic scenarios.
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8.1.5 Optimize the Implementation

The HIP implementation of Ericsson handles LSIs closer to the application, at the
kernel socket handler which may be a better option because it solves current problems
which need future work. Ericsson’s implementation solves referral and misbehaving
NAT problems because it translates the LSI to the HIT before arriving to the routing
tables.

In general, we must improve the LSI performance optimizing the implementation.
Moreover, we must find a solution in order to decrease the 3s consumed by the sys-
tem call connect () in the TCP protocol, because the other identifiers have a pretty
low delay compared to LSIs.

8.1.6 Improve /proc access

Currently hipfw implements a mechanism to decide if it must modify an incoming
packet with HITs by a packet containing LSIs or opportunistic [P addresses. Hipfw
manages this process checking if the destination port is in the file " /proc/net/tcp6".

The main disadvantage is that the daemon does this verification per each packet,
running a synchronous input/output operation where the application blocks until
the system call is complete. The input/output system calls are the most time con-
suming ones. Thus, this behaviour creates a bottleneck that we must solve in order
to improve the run-time performance.

We would recommend to improve the /proc access by broadcasting the incoming
packets. The alternative consists on broadcasting each incoming packet to HIT, LSI
and opportunistic IP at the same time. TCP drops packets with duplicate, i.e. out
of order sequence. Assume an application able to listen both address families. Then,
as TCP uses a sequence number to identify the order of the bytes sent from the
client, it processes a first packet and increments the expected sequence number. As
the other two packets have a wrong sequence number, TCP discards them without
generating any response.

However, the results of the experimentation proof that there are some problems.
Let’s assume an application listening on port 1111. The hosts receives an incoming
packet with LSIs. Then, hipfw broadcasts an LSI and HIT-based packets. The
LSI packet is delivered properly to the application, but as no application receives
the HIT-based packet, the TCP stack generates an RST packet and sends it to the
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initiator. In such situation, the initiator aborts the TCP communications.

On the other hand, UDP is an unreliable transport protocol, thus duplicate packets
could exist unless the application implements duplicate detection.

In conclusion, currently HIPL checks if there is an IPv6 application but broadcast
it otherwise (to LSI and system opportunistic-based applications). If we have an
[Pv6-based system opportunistic mode in the future, we may have to change this
behaviour.

8.2 Integrate Different Extensions

The component hipfw manages three extensions: opportunistic TCP, userspace
IPSec and LSI. The last two extensions follow the reinjection schema explained in
this thesis. This procedure adds several disadvantages that we must take into ac-
count in order to improve the integration of the extensions. First of all, the number
of times iptables process a packet is the number of active extensions plus one. Con-
sequently, hipfw enqueues a packet in the output queue of iptables various times,
increasing the loading of the queue. Secondly, reinjected packets arrive at the output
queue, which makes it hard to distinguish amongst inbound and outbound packet
modifications.

To avoid these problems, we could take a new approach. This new proposal changes
the reinjection mechanism by creating a chain of handlers that implements all the
necessary packet modifications before reinjecting the packet. We must be aware to
keep the correct order of extension processing for handling input and output packets
to ensure compatibility when more than one extension is in use.

As userspace IPSec relies on receiving HIT-based packets, it must be the last ex-
tension processing outbound packets. The LSI extension relies on receiving LSI
identifiers and therefore, it must be the first extension hipfw processes in order to
create a HIT-based packet. On the other hand, userspace IPSec extension must
process inbound packets first because it relies on getting non-HIP packets as input
and then by the LSI extension because it expects to receive HIT-based packets in
order to decide on the translation to an LSI-based packet. The scenario described

integrating both extensions is shown in
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Firewall Outbound Packet

LS extension IPSec extension

LSI HIT Reipjecti - [ IP@ ]—){Reinjection}

A

iptables LSI rule

Firewall Inbound Packet

IPSec extension LS extension

iptables ESP rule

Figure 8.1: Firewall inbound and outbound packets schema including the integration
of LSI and IPSec extensions, saving iptables queuing and unnecessary reinjections
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