
HELSINKI UNIVERSITY OF TECHNOLOGYFa
ulty of Information and Natural S
ien
es- Ex
hange Student -
Ba
kwards Compatibility Experimentation withHost Identity Proto
ol and Lega
y Software andNetworks

Final Proje
t
Teresa Fínez Moral

Department of Media Te
hnologyEspoo 2008

HELSINKI UNIVERSITY ABSTRACT OF THEOF TECHNOLOGY FINAL PROJECTAuthor: Teresa Fínez MoralTitle of thesis:Ba
kwards Compatibility Experimentation with Host Identity Proto
ol and Lega
ySoftware and NetworksDate: De
ember 5, 2008 Number of pages: 74Department: Department of Computer S
ien
e and EngineeringProfessorship: T-110Supervisor: Andrei Gurtov Dr.Instru
tors: Miika Komu M.S
.HIP ar
hite
ture de
ouples identi�er and lo
ator roles of IP addresses. A HIP
ommu-ni
ation starts with the Base Ex
hange, a four-way Di�e-Hellman-based key ex
hangethat authenti
ates the end-hosts and sets up symmetri
 key material for IPSe
. Beforethe Base Ex
hange is laun
hed, the DNS looks up the Host Identity Tag (HIT)
orre-sponding to the peer hostname. When the HIT of the peer is not available, the BaseEx
hange uses the opportunisti
 mode. This mode is a leap-of-faith implementationwhi
h allows the
ommuni
ation with no HIP-aware peers, without introdu
ing newar
hite
ture or pre-
on�guration to be deployed.This thesis fo
uses on adding IPv4 support for appli
ations using HIP in the HIP forLinux (HIPL) implementation. To a
hieve our goal, we have designed and implementedthe Lo
al S
ope Identi�er (LSI) whose main purpose is to support ba
kwards
ompat-ibility with the IPv4 API. Furthermore, LSIs and HITs allow
ommuni
ation amongstIPv4 and IPv6 appli
ations. Therefore, it solves the problem with IPv4 and IPv6 in-teroperability at the appli
ation layer for HIP proto
ol.In addition, the LSI design approa
h proposed
an be applied to move an opportunisti
mode library from user to system level, due to design similarities. This thesis presentsan analysis between the opportunisti
 mode implemented as a shared library and theproposed design.In the future we must keep down the loss of pa
kets until the Base Ex
hange is estab-lished. Finally, we dis
overed during the analysis that FTP needs future support.
Keywords: HIP, LSI, interoperability, opportunisti
 mode

ii

A
knowledgementsThis thesis is an out
ome of eight months working at HIIT in Helsinki, Finland.First, I spe
ially would like to thank my instru
tor Miika Komu for giving me theopportunity to do my thesis in the InfraHIP group and also for all his support andenormous help during this months. I
an not forget Andrei Gurtov, who gave mesome
omments and
orre
tions.It has been a pleasure to
ollaborate in a resear
h environment. Furthermore, I wantto thank all the people in the InfraHIP proje
t who supported me and made thingseasier going and spe
ially to René Hummen for his helps and dis
ussions.This work is dedi
ated to my family who o�ered me an un
onditional support andall their love in spite of the distan
e. Thank you for en
ouraging me to go abroad.Espoo, De
ember 5, 2008
Teresa Fínez Moral

iii

Contents
Abbreviations and A
ronyms viii1 Introdu
tion 11.1 Problem statement . 21.2 S
ope . 21.3 Stru
ture of the thesis . 32 Ba
kground 42.1 IPv4 vs IPv6 . 42.2 Host Identity Proto
ol . 52.2.1 New sta
k ar
hite
ture . 52.2.2 New name spa
e layer and identi�ers 62.2.3 Interoperating with IPv4 and IPv6 72.2.4 HIP Base Ex
hange . 82.2.5 HIP Opportunisti
 Mode . 82.3 Domain Name System . 102.3.1 Resour
e Re
ords . 102.3.2 Resolvers and Name Servers 102.3.3 DNS Extension for HIP . 112.4 IP Se
urity . 122.4.1 Ar
hite
ture . 122.4.2 IPSe
 with HIP . 142.5 Raw so
kets . 142.5.1 Creation . 152.5.2 Output pa
ket . 15iv

2.5.3 Input pa
ket . 162.6 Introdu
tion to the libipq library . 162.7 Introdu
tion to Netlink . 172.7.1 Message Format . 182.7.2 Netlink Ma
ros . 182.8 Introdu
tion to Dynami
 Linking with LD_PRELOAD 192.9 TESLA . 192.9.1 Ar
hite
ture . 202.9.2 Interposition . 202.10 TUN/TAP . 212.11 Dummy interfa
e . 223 Problem Statement 233.1 Deployment Problem . 233.2 Elaboration of the Deployment Problems 243.2.1 Des
ribe the LSI Identi�er . 243.2.2 Supporting IPv4-only Appli
ations 243.2.3 Interoperability between IPv4 and IPv6 Appli
ations 253.2.4 Supporting Opportunisti
 Mode as a System Library 264 Design 284.1 Lo
al S
ope Identi�er . 284.1.1 De�nition . 284.1.2 LSI Generation . 294.2 Pa
ket Pro
essing . 294.2.1 Output Pa
ket Pro
essing . 304.2.2 In
oming Pa
ket Pro
essing 304.2.3 Interoperability IPv4 and IPv6 314.3 Alternative Design for LSIs . 314.4 Opportunisti
 Mode Design . 325 Implementation 355.1 Lo
al S
ope Identi�er . 355.1.1 Data Stru
ture for LSIs . 36v

5.1.2 LSIs on the Virtual Interfa
e 365.1.3 LSI Generation . 375.1.4 Modi�ed Database Stru
tures 385.2 Pa
ket Pro
essing . 395.2.1 Output Pa
ket Pro
essing . 405.2.2 In
oming Pa
ket Pro
essing 405.3 Proto
ol translation me
hanism . 416 Analysis 426.1 Performan
e Evaluation Con�guration 426.1.1 Test Platforms . 426.1.2 Test Software . 426.1.3 Test Pro
edure . 436.2 Results and Analysis of the Performan
e Measurements 436.2.1 TCP Throughput . 446.2.2 TCP
onne
t . 446.3 ICMP . 456.4 List of Supported IPv4 Appli
ations 466.5 LSI Address Spa
e . 466.6 Maximum Transfer Unit and LSIs . 476.7 TUN/TAP me
hanism . 486.8 The referral problem . 486.8.1 FTP and Referrals . 486.8.2 Solution for FTP using LSIs 516.9 LSI Compatibility . 516.9.1 Normal Firewall A

ess Control 516.9.2 Userspa
e IPSe
 . 526.10 Opportunisti
 Mode . 527 Con
lusions 548 Future Work 568.1 LSI Future Work . 568.1.1 Assign an Address Spa
e . 56vi

8.1.2 Support DNS Resolution . 568.1.3 Withdraw Pa
kets Loss . 578.1.4 Solve the Referral Problem 578.1.5 Optimize the Implementation 588.1.6 Improve /pro
 a

ess . 588.2 Integrate Di�erent Extensions . 59

vii

Abbreviations and A
ronymsAH Authenti
ation HeaderALGs Appli
ation Layer GatewaysAPI Appli
ation Programming Interfa
eBEET Bound End-to-End TunnelBIND Berkeley Internet DomainCA Certi�
ate AuthorityDSA Digital Signature AlgorithmDNS Domain Name SystemDoS Denial of Servi
eESP En
apsulating Se
urity PayloadFQDN Fully Quali�ed Domain NameFTP File Transfer Proto
olHIP Host Identity Proto
olHI Host Identi�erHIPL HIP for LinuxHIT Host Identity TagIANA Internet Assigned Numbers AuthorityICMP Internet Control Message Proto
olICMPv6 Internet Control Message Proto
ol version 6IETF Internet Engineering Task For
eIKE Internet Key Ex
hange viii

IP Internet Proto
olIPv4 Internet Proto
ol version 4IPv6 Internet Proto
ol version 6IPSe
 Internet Proto
ol Se
urityISP Internet Servi
e ProviderL4 Layer 4LoF Leap-of-FaithLSI Lo
al S
ope Identi�erMITM Man In The MiddleNAT Network Address TranslationOSI Open Systems Inter
onne
tionPPP Point-to-Point Proto
olPTR Pointer Re
ordQoS Quality of Servi
eRFC Request For CommentsRR Resour
e Re
ordRSA Rivest Shamir AdelmanRTT Round-Trip TimeRTO Retransmission TimeoutRVS Rendezvous ServerSA Se
urity Asso
iationSAD Se
urity Asso
iation DatabaseSLIP Serial Line Internet Proto
olSNMP Simple Network Management Proto
olSP Se
urity Poli
ySPD Se
urity Poli
y DatabaseSPI Se
urity Parameter Index ix

TCP Transport Control Proto
olTESLA Transparent and Extensible Session-Layer Ar
hite
tureUDP User Datagram Proto
olVPN Virtual Private Network

x

Chapter 1Introdu
tionSin
e the Internet emerged, more than twenty years ago, the set of requirementshave
hanged. The initial design prin
iples and ar
hite
tural model for the Inter-net have been shifting from an end-to-end towards an end-to-middle model [39℄. Inaddition, the explosion of mobile te
hnologies have revolutionized the networking.Due to these new demands and te
hnology development, various proposals try tofa
e some of these new
hallenges for the Internet. The typi
al solutions are relatedwith the network-level proto
ols, e.g., Mobile IP. This proto
ol implies an additionalinfrastru
ture
reating a home network whi
h sends the pa
kets between it and themobile host sin
e ea
h mobile host has an invariant home address. The drawba
ks ofthis approa
h are la
k of se
urity, performan
e and internetworking [58℄. One su
halternative is the Host Identity Proto
ol (HIP). Further details about a
omparisonbetween these two approa
hes
an be found in [12℄.HIP addresses a number of new requirements related to end-host multihoming, mo-bility and se
urity by introdu
ing a new
ryptographi
 namespa
e, splitting identi�erand lo
ator roles of Internet Proto
ol (IP) addresses. In this new design, the networklayer identi�ers
ontinue being bound to the IP addresses and are in
harge of therouting. By
ontrast, the transport layer is bound to the endpoint's identity whi
hthe underlaying HIP layer de�nes. This approa
h has the bene�t that although net-work lo
ators
hange, transport-layer
onne
tions persist.HIPL positions the HIP ar
hite
ture towards IPv6-
ompatible appli
ations, but thereare still many IPv4-only appli
ations. Although the IPv6 deployment is a fa
t, itwill take some time until we
an refer to an IPv6-only environment. Therefore, therewill be a transition period where both IP versions must
oexist. On the other hand,its ar
hite
ture already supports IPv4 and IPv6 networks [1℄.In addition, HIP prefers Publi
 Key Infrastru
ture (PKI) [61℄ whi
h is not glob-ally deployed. Con
retely, HIP identities are
ryptographi
ally based, where a Host1

CHAPTER 1. INTRODUCTION 2Identity
onsists on a publi
 key. This Host Identity
ould be stored in DNS, a PKIor be anonymous.This thesis ta
kles these two problems, support for IPv4-only appli
ations and net-works without PKI support, to boost HIP deployment.1.1 Problem statementThe following is the problem statement this thesis deals with:1. Fa
ilitate the deployment of HIP to lega
y appli
ations and networks. We
ansubdivide the problem into two topi
s. The �rst point is to add support forIPv4-only appli
ations. As a
onsequen
e, we add interoperability betweenIPv4 and IPv6 at the appli
ation layer using HIP. Our main
ontribution isthe design and implementation of LSIs, an IPv4-sized identi�er whi
h allowsto run IPv4 appli
ations using HIP.2. Support networks without PKI when the
lient is using HIP. The most
ommons
enario is to establish
ommuni
ation with a peer not HIP-aware. In this
ase,HIPL fallba
ks to a non-HIP
ommuni
ation.We dis
uss more deeply the problems of deployment in
hapter 3.1.2 S
opeThe s
ope of this thesis is to design solutions for HIP for Linux (HIPL) implementa-tion to support IPv4-only lega
y appli
ations and to allow HIP-based
onne
tivitywithout PKI. We implemented the IPv4 support based on Lo
al S
ope Identi�ers(LSIs). Meanwhile HIP support for networks without PKI is based on the oppor-tunisti
 mode and a shim layer between transport and network layers. The designand implementation use C [27℄ as programming language.We also provide a performan
e analysis of the two new implementation features.The main obje
tive of the implementation is to prove that the design
an work inpra
ti
e. However, the performan
e and reliability are a se
ondary evaluation
rite-rion.

CHAPTER 1. INTRODUCTION 31.3 Stru
ture of the thesisThe rest of this thesis is organized as follows:Chapter 2 details and examines the fundamental proto
ols we need for introdu
-ing the resear
h area of this thesis. In addition, it de�nes the major linux librariesneeded for designing and implementing our solution.Chapter 3 dis
usses the problem statement presenting the deployment of the prob-lem and deepening in the subproblems.Chapter 4 presents our design and
hapter 5 introdu
es implementation details ofLo
al S
ope Identi�ers and system-based opportunisti
 mode.Chapter 6 explains the implementation analysis. Furthermore, it presents some de-sign alternatives for the
urrent design. The analysis
ontains measured results and
harts, and then dis
ussion of the results. Moreover, we go through FTP referralproblems and Maximum Transfer Unit (MTU) value modi�
ations related to LSIand the LSI address spa
e. Finally, we study the LSI
ompatibility with the
urrentHIPL proje
t and other extensions under development.Chapter 7 summarizes the main
on
lusions of this proje
t.To �nalize,
hapter 8 des
ribes dire
tions for future work, giving thoughts and ideasfor future improvements and extensions.

Chapter 2Ba
kgroundThe aim of this
hapter is to des
ribe the ba
kground topi
s. We assume thatthe reader understands the basi

on
epts of the TCP/IP suite and has skills in Cprogramming. The
hapter is organized as follows: se
tion 2.1
ompares the maindi�eren
es between IPv4 and IPv6. Se
ondly, se
tion 2.2 gives a general overviewof HIP. Following that, se
tion 2.3 des
ribes DNS and se
tion 2.4 des
ribes IPSe
.Apart from the general overview given for DNS and IPSe
, we also in
lude an ap-proa
h about how they are integrated into HIP. Then, we talk about issues related toUNIX programming: raw so
kets, netlink, LD_PRELOAD, TUN/TAP and dummyinterfa
e. Finally, in se
tion 2.9 we dis
uss also an extensible session-layer ar
hite
-ture using interposition libraries.2.1 IPv4 vs IPv6The main motivation for updating IP [49℄ was the la
k of address spa
e with IPv4.Network Address Translation (NAT) has been a short-term solution that prolongedthe lifetime of IPv4. However, this and other
hallenges su
h as di�
ulties in de-ploying new proto
ols made a new proto
ol version ne
essary: IPv6. IPv4 and IPv6have a lot of
on
eptual similarities, but IPv6 introdu
es new features in routingand network auto
on�guration that IPv4 does not have. Unfortunately, these IPversions are not dire
tly
ompatible, hen
e programs and systems designed to onestandard
an not
ommuni
ate with those designed with the other [34℄. The di�er-en
es between the proto
ol versions
an be grouped into seven
ategories [6℄:1. Address size. IPv6 addresses are 128 bits long, while IPv4 address size is 32bits. In other words, an IPv6 address is four times longer than an IPv4 address.This in
reases the address hierar
hy,
reating additional levels for addressing.2. Optional header. IPv4 has a variable length header, meanwhile IPv6 simpli�esit. IPv6 base header has a �xed size that
an be followed by optional headersand, moreover, it does not in
lude a
he
ksum.4

CHAPTER 2. BACKGROUND 53. Improved options. IPv6 in
ludes some options not available for IPv4. Further-more, the wire format for the options speeds up the pa
ket-pro
essing timein routers. This is be
ause they are handled with extensions that not all therouters have to pro
ess.4. Se
urity. IPv6 introdu
es se
urity me
hanism at the network level providingauthenti
ation,
on�dentiality and integrity using the IPSe
 proto
ol. IPv6spe
i�
ations mandate IPSe
 in
lusion while this is optional with IPv4.5. Provision for proto
ol extension. IPv6 design is more extendable in order tosupport new te
hnology
hanges.6. Support for address auto
on�guration and renumbering. IPv6 allows to assignlo
al addresses automati
ally, as well as renumbering networks at a site moredynami
ally.7. Support for resour
e allo
ation. IPv6 supports the same Quality of Servi
e(QoS) features as IPv4, in
luding di�erentiated servi
e (Di�Serv) indi
ation.However, IPv6 in
ludes a tra�
 �ow �eld whi
h
an provide a solid base tobuild QoS proto
ols.2.2 Host Identity Proto
olIn this se
tion, we give a HIP overview based on the related Request For Comments(RFCs), Internet Drafts and a number of arti
les.2.2.1 New sta
k ar
hite
turePro
esses use so
kets to send and re
eive network data in the
urrent network ar-
hite
ture. The tra�
 of di�erent pro
esses is demultiplexed by IP address, portand proto
ol. On the
ontrary, HIP binds transport layer so
kets to Host Identi�ers(HIs), allowing persistent bindings throughout IP addresses
hanges. As a result,HIP ar
hite
ture splits the identi�er and lo
ator roles of the IP address [46℄. Whilethe HI is the end-point identi�er, the IP represents the topologi
al lo
ation of thehost in the network. This requires a translation me
hanism between the HI and theIP, and vi
e versa. For a
hieving this translation me
hanism, HIP lo
ates a newlayer
alled Host Identity Layer in the TCP/IP sta
k, between the transport andnetworking layer. The
omparison between the
urrent Internet bindings and theones introdu
ed by HIP ar
hite
ture is shown in Figure 2.1.2.2.2 New name spa
e layer and identi�ersHIP [52℄ introdu
es the HIP layer to the TCP/IP networking sta
k, as Figure 2.2shows. The new layer is based on HIs and it is lo
ated between transport and net-

CHAPTER 2. BACKGROUND 6
IP address

Location

IP address

End−point

End−point

Location

HI

Process SocketProcess Socket

New architectureCurrent architecture

Dynamic bindingFigure 2.1: Bindings
omparison [46℄work layers. The Host Identity namespa
e is de
entrally administered. Ea
h host
reates and manages its own identities. A HI is e�e
tively a publi
 key of a private-publi
 key pair.A HI is a publi
 key of an asymmetri
 key pair. Using a publi
-key-based HI weimprove the se
urity of the
ommuni
ation, in
rease prote
tion against man-in-the-middle (MITM) atta
ks and provide end-host authenti
ation. HIP supports publi
Rivest Shamir Adelman (RSA) and Digital Signature Algorithm (DSA) keys. There-fore, the
ryptographi
 nature of HI makes identity theft
omputationally di�
ult.
IPv4 API IPv6 API

Ethernet

HIP

HIP API

IPv6

TCP UDP

Socket

Application
Application

Transport
Layer

Layer

Layer

HIP
Layer

Network
Layer

Link
Layer

IPv4

Figure 2.2: HIP layering ar
hite
tureHITA Host Identity Tag (HIT) is a 128 bit hash of a HI. The length of the HI dependson the strength of the publi
 key pair. In the
urrent implementations, it is 1024bits. The �xed-size HIT is ne
essary be
ause HIs
an be of variable length whi
hmakes proto
ol en
oding and so
kets API binding
hallenging.

CHAPTER 2. BACKGROUND 7A HIT is a type of Overlay Routable Cryptographi
 Hash Identi�er (ORCHID) [45℄,i.e. appli
ations and APIs use HIT as an endpoint identi�er. An ORCHID resemblesan IPv6 address whi
h is not routable from an IPv6 layer point-of-view and it has apre�x in order to di�erentiate it from a real IPv6 address. An algorithm generatesthe ORCHID taking as input the following parameters: a unique or stati
ally uniquebitstring, a
ontext id whi
h is randomly generated and de�nes the usage
ontext, ahash fun
tion and a 28-bit pre�x.ORCHIDs are stati
ally unique. However, there exist two situations where ORCHID
ollisions
ould be possible. The �rst s
enario is when two di�erent input bitstringswithin the same
ontext map to the same ORCHID. In this
ase, the state-set-upme
hanism resolves the
on�i
t. The se
ond situation happens when two input bit-strings in di�erent
ontexts map to the same ORCHID. The solution is to indi
atea
on�i
t when this ORCHID is already in use.The most important properties of HIT are:
• Same length as IPv6 addresses. Thus, HIP
an use HITs in existing IPv6appli
ations.
• Self-
ertifying. HITs are self-
ertifying be
ause of the se
ond-preimage resis-tan
e property of hash fun
tions. In other words, given a Host Identity K1,�nding a di�erent Host Identity K2, where hash(K1) = hash(K2), is
omputa-tionally hard. In the future, as the
omputational power in
reases, this feature
ould disappear. In this
ase, the length of the primary key should be in-
reased in order to preserve se
urity, nevertheless the HIT size is �xed. Thebest approa
h is to use the Host Identity when identi�
ation is needed [43℄.
• Probability of
ollision very low. For any given HIT the probability of
ollisionis approximately (2−126) ∗ N where N is the total number of HITs [8℄. Thebirthday paradox states that given a large enough population and a hash spa
e,there may be
ollisions. A 128-bit hash will have 0.001%
ollision
han
e in a

9x1016 population [53℄.LSIThe Lo
al S
ope Identi�er (LSI) is a 32-bit representation for a HI. Thus, HIP
anbuild an LSI taking the last bytes of the HIT. LSIs have the same length as IPv4addresses in order to support IPv4-only lega
y appli
ations. LSIs are only valid inthe
ontext of the lo
al host, similarly to so
ket des
riptors. Another feature is thatLSIs are shorter than HITs, in
reasing the probability of
ollision.

CHAPTER 2. BACKGROUND 82.2.3 Interoperating with IPv4 and IPv6Nowadays the deployment of IPv6 networks is slowly repla
ing IPv4 in the Internet.Nevertheless, during this transition period between the two versions, network nodesmust be able to
ommuni
ate with both proto
ols. The transition me
hanism [2℄may in
lude:1. Domain Name Server (DNS) upgrade, introdu
ing AAAA Resour
e Re
ords.2. Dual proto
ol sta
ks. Parallel support for both IPv4 and IPv6.3. Tunneling. IPv6 pa
kets are tunneled over IPv4 regions.4. A standard IPv6 programming interfa
e to upgrade existing IPv4 appli
ationsand ease the development of IPv6 ones.HIP de
ouples the transport and internetworking layer, thus it solves interoperabilityproblems at the appli
ation and network node [22℄. As shown in Figure 2.1, trans-port layer so
kets are not bound to IP addresses, then a lega
y IPv4 appli
ation
antalk with a lega
y IPv6 appli
ation. HIP supports IPv4 and IPv6 so
kets be
ause itis able to resolve an IP to an end-point identi�er: an LSI for IPv4 appli
ations or aHIT for IPv6 appli
ations.
TCP v6 TCP v4

IPv4 IPv4

Application v4

TCP v4

IPv6 IPv6

Application v6

TCP v6

Host Identity

Link layer

Host Identity

Link layer

Figure 2.3: Example of
ommuni
ation a
ross IP versions with HIPFigure 2.3 illustrates a typi
al s
enario where an IPv4 appli
ation
ommuni
atesover an IPv6 network with an IPv6 appli
ation. The
onne
tivity between bothhosts
an be either IPv4-based or IPv6-based, independently of the appli
ation.

CHAPTER 2. BACKGROUND 92.2.4 HIP Base Ex
hangeThe �rst phase in a HIP
ommuni
ation is the Base Ex
hange [52℄, as shown inFigure 2.4. The Base Ex
hange is a four-way handshake that performs end-to-endauthenti
ation. The �rst pa
ket triggers the
ommuni
ation and the other three
onsist of a Di�e-Hellman key ex
hange whi
h
reates a pie
e of key material thatIPSe
 uses for en
rypting and prote
ting the data.
Initiator Responder

I2:<response, authentication>

I1

R1:<challenge>

R2:<authentication>Figure 2.4: HIP Base Ex
hangeThe host initiating the
ommuni
ation is the initiator and the peer host is the re-sponder. Typi
ally, the initiator is the
lient host and the responder a server. Theinitiator begins the handshake pro
edure by sending an I1 pa
ket. When the peerre
eives the I1 pa
ket, it generates an R1 pa
ket. The R1 pa
ket
ontains a puz-zle with a
on�gurable di�
ulty level, the initial Di�e-Hellman parameters and asignature. The puzzle is a
ryptographi

hallenge that the initiator must solve inorder to
ontinue the Base Ex
hange. The initiator tries to solve the puzzle andanswers to the responder with an I2 pa
ket. The I2 pa
ket must
ontain the solutionof the puzzle and Di�e-Hellman parameters. If the solution for the puzzle is wrong,the peer dis
ards the I2 pa
ket and aborts the
ommuni
ation. Otherwise, the peer�nalizes the Base Ex
hange by sending a signed R2 pa
ket.A more detailed analysis of the HIP Base Ex
hange proto
ol
an be found in [57℄.2.2.5 HIP Opportunisti
 ModeThe opportunisti
 mode is based on the Leap-of-Faith (LoF) mode of operation.LoF means that the initiator initiates the �rst
onne
tion without knowledge ofpeer identity. Subsequent
ommuni
ations
an use a
a
hed identity of the peer.It is based on the assumption that during the �rst
onne
tion, there is no atta
kagainst the
onne
tion [37℄. In
onsequen
e, it is prone to MITM atta
ks be
ausethe initiator does not know the responder's identity. A third host pla
ed betweenthe initiator and responder
an inter
ept the
ommuni
ation and impersonate the

CHAPTER 2. BACKGROUND 10responder. Therefore, it is re
ommended to use it only in trusted environments [10℄.Figure 2.5 illustrates an MITM atta
k with opportunisti
 mode. Ali
e is the initia-tor and Bob the responder. When Ali
e sends an I1 pa
ket, Trudy inter
epts thepa
ket and responds with her own R1 to Ali
e. Consequently, Ali
e will think she is
ommuni
ating with Bob, but she is
ommuni
ating Trudy.
Trudy BobAlice

I1

R1

I1Figure 2.5: Man in the Middle atta
k during Base Ex
hange in Opportunisti
 ModeTCP Extension for Opportunisti
 ModeWhen the initiator starts the Base Ex
hange with opportunisti
 mode, it waits untilit re
eives an R1 pa
ket from the peer or times out. If the peer is not HIP-enabled,the initiator will be waiting until a timeout o

urs. The extension dis
ussed in thisse
tion provides a way to de
rease laten
y when the peer is not HIP-enabled basedon [5℄, improving user experien
e for HIP.We explain the s
enario independently of the peer
apability to support HIP. Firstly,a
lient appli
ation starts
ommuni
ations with a peer. The HIP layer blo
ks the
all and requests the HIT mat
hing the IP. We assume that the initiator does notknow the HIT of the peer. Thus, the Base Ex
hange starts in opportunisti
 mode,sending an I1 pa
ket together with a TCP SYN message with a spe
ial TCP option.If the responder is HIP-enabled, it pro
esses the I1 pa
ket and generates and sendsan R1 pa
ket. The initiator re
eives the TCP SYN ACK option and dis
ards it. Atthis moment, the responder replies with R1 and the initiator appli
ation establishesthe
ommuni
ation with the peer HIT.On the other hand, if the responder is not HIP-aware, it does not understand theI1 pa
ket and the TCP spe
ial option. It answers the initiator with a TCP SYNACK message. As the spe
ial option is not present in the response, the initiatordete
ts that the peer does not support HIP. The initiator unblo
ks the appli
ationand establishes the
onne
tion without HIP.This solution only works for TCP tra�
, be
ause it is based on the handshake ofthe TCP proto
ol [50℄. However, it is better than some other approa
hes, as e.g.in
luding an option in the IP header, be
ause most
urrently deployed middleboxes

CHAPTER 2. BACKGROUND 11drop the pa
ket [5℄.2.3 Domain Name SystemThis se
tion introdu
es the basi
s of the Domain Name System (DNS) proto
ol [29℄.DNS a
ts as an "Internet phone book". It is a distributed database whi
h maps ahuman name: a hostname, e.g. infrahip, or a Fully Quali�ed Domain Name (FQDN),e.g. infrahip.hiit.�, to an IP address. The DNS name spa
e follows a hierar
hi
alorganization where ea
h node has a label. The domain name of a node is the list oflabels separated by a period, in this
ase a dot, starting at that node and ending atthe root node [54℄.2.3.1 Resour
e Re
ordsA Resour
e Re
ord (RR) [55℄ is a DNS name re
ord. There are di�erent types ofRRs:
• A: Maps a hostname into an IPv4 address.
• AAAA: Also
alled a quad A re
ord. Maps a hostname into an IPv6 address.
• PTR: Called pointer re
ords. Maps IP addresses into hostnames. Providesreverse resolution to A and AAAA RRs, translating an address, either IPv4 orIPv6. PTR re
ords involve appending in-addr.arpa for IPv4 addresses andip6.int for IPv6 addresses.2.3.2 Resolvers and Name ServersThe resolver is usually implemented with the aim of providing
ommuni
ation be-tween the appli
ation and the DNS server by sending DNS queries and managingthe responses. UNIX hosts use mainly two library fun
tions to a

ess the resolver.Fun
tion gethostbyname translates hostnames to IP addresses and gethostbyaddrprovides the reverse fun
tionality. Their main problem is that they only supportIPv4.Fun
tions getaddrinfo and getnameinfo also support IPv6 be
ause they returnso
kaddr stru
tures. This stru
ture is shown in Figure 2.6 and as it is visible, itde�nes a generi
 so
ket address stru
ture.

CHAPTER 2. BACKGROUND 12stru
t so
kaddr{ uint8_t sa_len;int sa_family;
har sa_data[14℄;}; Figure 2.6: The so
kaddr stru
tureThe getaddrinfo fun
tion resolves a hostname to an IP address. The fun
tion andthe asso
iated data stru
ture are shown in Figure 2.7. Fun
tion getnameinfo is the
omplement of getaddrinfo. It inputs an IP address and returns the hostname andthe servi
e.stru
t addrinfo{ int ai_flags; /* Input flags */int ai_family; /* E.g. AF_INET6, AF_INET */int ai_so
ktype; /* So
ket type */int ai_proto
ol; /* 0 or IPPROTO_xxx forIPv4 or IPv6 */size_t ai_addrlen; /* Length of ai_addr */
har *ai_
anonname; /* Canoni
al name */stru
t so
kaddr *ai_addr; /* Pointer to so
ket addressstru
ture */stru
t addrinfo *ai_next; /* Points next addrinfo */};int getaddrinfo(
onst
har *hostname,
onst
har *servi
e,
onst stru
t addrinfo *hints,
onst stru
t addrinfo **result)Figure 2.7: The addrinfo stru
ture and the getaddrinfo fun
tion2.3.3 DNS Extension for HIPDNS extensions for HIP are de�ned in [43℄. They des
ribe a new RR for HIP HIswhere the resolver library returns a HIT for IPv6 or HIP-aware [38℄ appli
ations, oran LSI for IPv4-only appli
ations.The information that is stored in DNS
onsists of:

CHAPTER 2. BACKGROUND 13
• IP addresses, via A or AAAA
• HI, HIT and possibly a set of rendezvous servers (RVS) [31℄ via HIP.The me
hanism implemented in HIPL is shown in Figure 2.8. When the appli
ationtriggers a DNS query, the resolver library returns the peer host HIT and IP. Firstly,this information is stored in HIP data stru
tures and se
ondly, the resolver returnsthe HIT to the appli
ation. The appli
ation
onne
ts with the peer host using theHIT. Before the data tra�
 starts, HIP initiates the Base Ex
hange with the peerin order to establish the key ex
hange to prote
t the data.The main advantage of storing HIs to DNS is to prevent MITM atta
ks. In order toprevent spoo�ng atta
ks, it is re
ommended to use DNSSEC [10℄. On the other hand,the main disadvantage is that
ontemporary DNS
an not resolve HIs to hostnamesor IP addresses.

Application
1. getaddrinfo(hostname)

DNS

2. hostname 3. <HIT,IP>

Socket layer

HIP

IPSec

Network

PEER

4.<HIT,IP>5.

HOST

8. BEX

9. Protected
application data

7. connect(HIT)

6. HIT
Resolver library

Transport

DNS Proxy
or

LOCAL HOSTFigure 2.8: Resolver intera
tionWhen user wants to use HIP with a lega
y appli
ation, one problem for the previoussolution o

urs when the appli
ation wants to use an IP address instead of a HIT.One solution for this is to introdu
e a domain name pre�x spe
i�
 to HIP. E.g a"hip-www.example.
om" DNS query
ould return a HIT or an LSI [62℄.2.4 IP Se
urityIP Se
urity (IPSe
) [26℄ operates at the network layer providing se
urity supportfor transport-level proto
ols. It se
ures
ommuni
ations by authenti
ating and/oren
rypting ea
h pa
ket. As it is below the transport layer, it is transparent toappli
ations.

CHAPTER 2. BACKGROUND 142.4.1 Ar
hite
tureSe
urity Poli
yA Se
urity Poli
y (SP) tells an IPSe
 implementation how to manage the di�erentdatagrams re
eived or sent to the network devi
e. These rules de
ide when the hostapplies or bypasses IPSe
 prote
tion, or dis
ards a pa
ket. They are stored in theSe
urity Poli
y Database (SPD).Se
urity Asso
iationA Se
urity Asso
iation (SA) de�nes a set of se
urity-related information, in
lud-ing the symmetri
 key and algorithm, des
ribing an IPSe
 prote
tion between twodevi
es. The management of SAs involves a three-tuple:
• Se
urity Parameter Index (SPI). Pseudo-randomly derived number whi
hidenti�es a parti
ular SA uniquely between two ma
hines. Its purpose is todistinguish among di�erent SAs from ea
h other. SPI is sent on the wire.
• Destination Address. Address of the devi
e for whom the SA is established.
• Se
urity Proto
ol Identi�er. IPSe
 provides the following se
urity proto-
ols for the asso
iation:� Authenti
ation Header (AH). Provides data integrity and authenti
ation,but not priva
y be
ause the IP payload is not en
rypted. AH is not
ommonly used in pra
ti
e.� En
apsulating Se
urity Payload (ESP). En
rypts and authenti
ates a
on-ne
tion data �ow. The use of ESP [25℄ is more
ommon than AH be
auseit is a superset of ESP.Ea
h proto
ol supports two modes of operation [26℄:1. Transport mode. This mode prote
ts the tra�
 between two end-hosts[42℄. The transport mode is not
ompatible with NATs whi
h is one reasonwhy it is not used widely.� AH. O�ers se
urity to sele
ted portions of the IP header, headerextensions and sele
ted options.� ESP. O�ers se
urity for proto
ols higher than IP, be
ause only theIP payload is en
rypted.2. Tunnel mode. Used for network-to-network, host-to-network or host-to-host
ommuni
ations over Internet. IPSe
 en
apsulates the whole IPdatagram, in
luding the header. Therefore, the pa
ket must be en
apsu-lated within a se
ond IP pa
ket in order to be routed. If AH is employed,some parts of the built IP header
an be en
rypted.

CHAPTER 2. BACKGROUND 15Se
ure Asso
iation Database (SAD) stores information related with SAs. An SA isunidire
tional, meaning that a single SA only handles inbound or outbound tra�
.To se
ure bidire
tional
ommuni
ation, two SAs must be
reated.The main di�eren
e between SPs and SAs is that an SP spe
i�es what we want toen
rypt and an SA details how we want to se
ure it.2.4.2 IPSe
 with HIPBase Ex
hange sets up key material for SAs to en
rypt the data tra�
. After theBase Ex
hange, the ESP proto
ol [44℄ prote
ts user data.HIP
urrently supports a new ESP mode
alled Bound End-to-End Tunnel (BEET).This mode
ombines transport mode format and tunnel mode semanti
s. The"outer" addresses go on the wire and the "inner" addresses are the ones the ap-pli
ation sees. The BEET mode with HIP uses HITs as inner addresses and IPaddresses as outer addresses. Figure 2.9 shows the di�eren
e between BEET, tunneland transport mode. As we
an observe, transport and BEET mode headers havethe same syntax. Furthermore, BEET mode semanti
s are similar to tunnel modeones, although the tunnel mode introdu
es an extra IP header.
IP ESP TCP DATA IP ESP TCP DATAIP

ESP DATAIP TCP

Transport mode Tunnel mode

Outer @

Inner @

Beet mode = Transport header + Limited tunnel semanticsFigure 2.9: Comparison of BEET, transport and tunnel modeThe BEET mode does not in
lude HITs in the pa
ket whi
h goes on the wire. In-stead, the SPI impli
itly de�nes the HITs. IPSe
 links ea
h asso
iation to two ESPSAs, one for in
oming and one for outgoing pa
kets. An SA pair is indexed by 2SPIs and 2 HITs. HIP updates these asso
iations and removes them when the HIPasso
iation �nishes.2.5 Raw so
ketsA so
ket [63℄ in the
ontext of TCP/IP is an end-point of a bidire
tional
ommuni-
ation �ow. It allows
ommuni
ation between an appli
ation and the TCP/IP sta
k.

CHAPTER 2. BACKGROUND 16Basi
ally, we
an divide so
ket types into three types [17℄:
•
onne
tionless so
kets (SOCK_DGRAM)
•
onne
tion-oriented so
kets (SOCK_STREAM)
• raw so
kets SOCK_RAWHowever, we limit the dis
ussion to raw so
kets. One of the most important featuresof raw so
kets that we use in the LSI implementation of HIPL is the possibility toa

ess the pa
ket header and
hange it. Non-raw so
kets usually strip the headerand re
eive only the payload.Raw so
kets allow us to implement Layer 4 proto
ols (L4) or L3.5 like HIP in theuserspa
e and to implement some pro
essing from those proto
ols that are normallypro
essed in the kernel [4℄.2.5.1 CreationWhen an appli
ation establishes network
ommuni
ations, it �rst needs to open aso
ket by
alling the so
ket() fun
tion. The �rst argument to the fun
tion sets theaddress family. It
an be AF_INET for IPv4 or AF_INET6 for IPv6-enabled so
kets.The se
ond argument determines the so
ket type. For example, the SOCK_RAW value
reates a raw so
ket. Finally, the third argument de�nes the proto
ol. Figure 2.10shows the prototype of the so
ket system
all for
reating a raw so
ket.int so
ket(int family, int type, int proto
ol)Figure 2.10: The so
ket fun
tionRaw so
kets
an use the fun
tion bind() in Figure 2.11. It
an set the sour
e addressused to send output pa
kets over the raw so
ket and it also a
ts as an input �lter.One of the most
ommon errors from bind is Address already in use. This error isdue to an existing
onne
tion that is already listening on the port in whi
h the servertries to bind. One possible solution is to bind the port to the wild
ard interfa
e afterthe send
all �nishes.2.5.2 Output pa
ketThe user pro
ess must
al
ulate and set the header
he
ksum of the transport layerpa
ket before sending it, assuming that the spe
i�
 transport proto
ol employs
he
k-sums. Raw so
kets allow that the proto
ol implementation
an either spe
ify the

CHAPTER 2. BACKGROUND 17int bind(int so
kfd,
onst stru
t so
kaddr *my_addr,so
klen_t addrlen)Figure 2.11: The bind fun
tionwhole IP header or let the networking sta
k
reates it. The implementation
ontrolsthis using the IP_HDRINCL so
ket option. Only IPv4 so
kets
an use the IP_HDRINCLoption. Figure 2.12 shows the sendto interfa
e.size_t sendto(int so
kfd,
onst void *buff, size_t bytes, int flags,
onst stru
t so
kaddr *to, so
klen_t *addrlen)Figure 2.12: Fun
tion for sending data2.5.3 Input pa
ketThe kernel re
eives a datagram and passes it to the raw so
ket only if the threefollowing
onditions are true:
• The raw so
ket proto
ol and the re
eived datagram proto
ol �eld mat
h.
• If the lo
al IP address bound to the raw so
ket by bind mat
hes the destinationIP address of the pa
ket or the so
ket has not been bound or it is bound toINADDR_ANY for IPv4 or IN6DDR_ANY_INIT for IPv6.
• If a foreign IP address was spe
i�ed with
onne
t and mat
hes the sour
e IPaddress of the pa
ket.If these three prerequisites are met, the kernel passes the datagram to the raw so
ket,in
luding the IP header if the IP_HDRINCL so
ket option is a
tivated.2.6 Introdu
tion to the libipq libraryLibipq [33℄ is a development library for iptables userspa
e pa
ket queuing [32℄. Net-�lter provides a me
hanism to queue pa
kets to the userpa
e and then outputtingthem ba
k to the kernel with a verdi
t that determines whether the kernel musta

ept or drop the pa
ket. HIPL uses this me
hanism for modifying the pa
ket andreinje
ting it to the kernel. We will give an introdu
tory overview to the basi
 APIusage.

CHAPTER 2. BACKGROUND 18Firstly, in order to redire
t the pa
kets to the userspa
e, an iptables rule must beset up with the argument QUEUE as follows:iptables -I OUTPUT -d LSI -j QUEUEThe before rule queues all output pa
kets whose destination address is an LSI. Thenext step is to initiate an ipq handle to read the queued pa
kets and set the mode toget the data. There are two possible modes: metadata (IPQ_COPY_META) or payload(IPQ_COPY_PACKET). These fun
tions are illustrated below.h = ipq_
reate_handle(0, PF_INET)ipq_set_mode(h, IPQ_COPY_PACKET, BUFSIZE)Fun
tion ipq_read reads pa
ket
ontents and fun
tion ipq_message_type returnsinformation about this
ontent. Spe
i�
ally, if it is a network pa
ket, it returns thevalue IPQM_PACKET and if it is an error message, it returns the value NLMSG_ERROR.Then, ipq_get_pa
ket gets the pa
ket
ontent. At this point, pa
ket
ontent
an bemodi�ed prior to reinje
tion ba
k into the kernel. If an appli
ation modi�es a pa
ket,it must update
he
ksums. Otherwise, the kernel dis
ards the pa
ket be
ause of aninvalid
he
ksum. Furthermore, queue handlers are IP proto
ol spe
i�
, hen
e thepa
ket IP family must stay un
hanged. Fun
tion ipq_set_verdi
t allows us to setthe pa
ket verdi
t: ACCEPT or DROP. If the verdi
t is ACCEPT, the pa
ket
ontinuesthe pro
ess through the sta
k. A DROP verdi
t drops the pa
ket. The fun
tion ipq_-set_verdi
t sets the verdi
t depending on the id of the pa
ket, this is a �eld whi
hallows libipq to distinguish the pa
kets be
ause its value is unique.ipq_read(h, buf, BUFSIZE, 0)ipq_message_type(buf)ipq_get_pa
ket(buf)ipq_set_verdi
t(h, pa
ketId, NF_ACCEPT,0, NULL)Finally, the next
all
loses the handle:ipq_destroy_handle(h)2.7 Introdu
tion to NetlinkNetlink [15℄ allows userspa
e appli
ations to
ommuni
ate with the kernel. It is usede.g. by Berkeley Internet Domain (BIND) [54℄ to
on�gure routing-related informa-tion. It sets the following aspe
ts of the network
ontrol plane [24℄:
• NETLINK_ROUTE. Userspa
e routing daemons use netlink to update the kernelrouting table.

CHAPTER 2. BACKGROUND 19
• NETLINK_FIREWALL. IPv4 �rewall
ode sends pa
kets through netlink.
• NETLINK_NFLOG. Communi
ation
hannel for the userspa
e iptable manage-ment tool and kernel spa
e Net�lter module.
• NETLINK_ARPD. Manages the ARP table from userspa
e.To use netlink, the appli
ation has to
reate a so
ket. The netlink address familyis AF_NETLINK and the type is either SOCK_RAW or SOCK_DGRAM. The proto
ol typerefers to the netlink feature the so
ket uses.2.7.1 Message FormatFigure 2.13 illustrates netlink messages. All netlink messages
onsist of a headerplus a payload.

Ancilliary DataPAD
Netlink Message

Header
Netlink Message

Header

NLMSG_NEXTNLMSG_DATA

NLMSG_LENGTH

NLMSG_ALIGNFigure 2.13: Netlink message and netlink ma
ro intera
tionThe header
ontains metadata about the message. The header is depi
ted in Figure 2.14.stru
t nlmsghdr{__u32 nlmsg_len; /* Message length: Header + data */__u16 nlmsg_type; /* Message type */__u16 nlmsg_flags; /* Additional flags */__u32 nlmsg_seq; /* Sequen
e number */__u32 nlmsg_pid; /* Sending pro
ess PID */} Figure 2.14: The netlink header stru
ture2.7.2 Netlink Ma
rosThe following ma
ros build and manipulate the messages. For more information, see[15℄.

CHAPTER 2. BACKGROUND 20
• NLMSG_ALIGN. Used internally by the other ma
ros. Rounds up the length of anetlink message.
• NLMSG_DATA. Given a pointer to a netlink header stru
ture, this ma
ro returnsa pointer to the an
illary data.
• NLMSG_LENGTH. Sets the nlmsg_len �eld of a netlink message header. Thema
ro returns the size of the payload in
luding the header, rounded up to thenearest NLMSG_ALIGNTO bytes.
• NLMSG_NEXT. If a netlink message has more than one response, this fun
tion�nds the next response.2.8 Introdu
tion to Dynami
 Linking with LD_PRELOADDynami
 linking provides the possibility of inter
epting a fun
tion
all that an appli-
ation makes to any shared library at running time [9℄. On
e the interposer libraryinter
epts the
all, it
an
all the real fun
tion the appli
ation intended to
all, aswell as overwrite the fun
tion
all and modify the original fun
tionality. E.g. inHIPL we
an load the variable with three inter
epted libraries:export LD_PRELOAD=libinet6.so:libhiptool.so:libhipopendht.soThe interposition with the real
all is divided into two steps:1. Create the interposer library. This will overwrite fun
tions from other libraries,like e.g. glib
. The interposer library may
ontain the implementation of thefun
tions to inter
ept.2. Set the LD_PRELOAD shell environment variable with the absolute path tothe interposer library.When the appli
ation
alls the fun
tion that the interposer library rede�nes, as thislibrary is loaded before the other ones, the loader �rst �nds the symbol of the mod-i�ed library when trying to resolve the external referen
e [19℄.If the user or administrator does not want to use the interposition library, he or shemust unde�ne the LD_PRELOAD variable.We must take into a

ount that setuid programs disable LD_PRELOAD, in orderto prevent se
urity problems. In addition, LD_PRELOAD is not available for alloperative systems and might have problems with some Linux extensions, su
h ase.g. Se
urity-Enhan
ed Linux (SELinux). Another disadvantage is the use of LD_-PRELOAD with
haining appli
ations, i.e., when an appli
ation is preloading the

CHAPTER 2. BACKGROUND 21same fun
tion with two di�erent interposition libraries, how do we know whi
h isthe library that the loader
alls �rst?2.9 TESLATESLA is a transparent and extensible session-layer ar
hite
ture for end-to-end net-work servi
es [21℄. There has been an in
reasing importan
e of session-layer servi
esin the Internet, i.e., servi
es whi
h have a
ommon �ow between a sour
e and des-tination, and produ
e groups of �ows using shared
ode and possibly shared state.Current resear
h fo
uses on in
reasing transport-level fun
tionality, some examplesare: sharing
ongestion information, end-to-end session migration for mobility, en-
ryption servi
es or setting up multiple
onne
tions to improve the throughput be-tween a sour
e and a destination. Originally these servi
es were in the kernel level,though it would be advantageous to have them in the user level. This later approa
his a
ompli
ated pro
ess, be
ause the implementation must spe
ify the internal logi
,algorithms and handle details su
h as pro
ess management or interpro
ess
ommu-ni
ation, in
reasing the programmer's time and e�ort. The three design goals ofTESLA are:1. Provide a high-level abstra
tion to session servi
es, whi
h operate on network�ows and treat �ows as obje
ts.2. Con�gure session servi
es transparently from the appli
ation. TESLA allowsservi
es to de�ne APIs to be exported to TESLA-aware appli
ations.3. Provide the possibility of
omposing di�erent servi
es to o�er new fun
tional-ity. TESLA writes session servi
es as event handlers with a
allba
k-orientedinterfa
e.TESLA is a C++ framework whi
h
ould be
on�gured using an interposition libraryto modify the intera
tion between the appli
ation and the system. An implementa-tion of this design is available in [60℄.2.9.1 Ar
hite
tureAs we previously explained, TESLA is an interposition layer between the appli
ationand the operating system or libraries, providing an abstra
tion level for session-layerservi
es. It uses the �ow handler
on
ept to provide this abstra
tion. Ea
h sessionservi
e is an instan
e of a �ow handler where TESLA allows
ommuni
ation betweenthe di�erent session servi
es. On an abstra
t level, a �ow handler deals with tra�

orresponding to a single so
ket. There is another �ow type
alled network �owwhi
h is a stream of bytes sharing a logi
al sour
e and destination. The �ow handler

CHAPTER 2. BACKGROUND 22operates or transforms an input byte stream, su
h as e.g.
ompressing or en
ryptingthe input network �ow, and returns one or more network �ows. Therefore, input�ows
orrespond to upstream handlers, su
h as end appli
ation, and output �owsmap to down-stream handlers, e.g. send routine.2.9.2 InterpositionTESLA a
ts as an interposition library. The library libtesla.so is added as ashared library with the LD_PRELOAD environment variable, a
on
ept dis
ussed inse
tion 2.8. This library
ontains the interposition library but not the handlers. Thehandlers are provided by the flow_handler API. Flow handlers are virtual methods
hara
terised by being asyn
hronous and event-driven, hen
e methods must returnimmediately. We
an divide them into two groups:
• Downstream methods. Invoked by the input �ow, they provide an abstra
t �owto the upstream handler.
• Upstream methods. Invoked by the handler output �ow. They a
t as
allba
ksinvoked by the upstream handler.Some �ow
ontrol methods exist in both groups in order to avoid bottlene
ks in theappli
ation or in TESLA. A �ow handler may signal the input �ow to stop sendingdata and later on restart the handler, as well as an output �ow may
he
k whetherthe upstream handler is available. Sometimes the handler must re-enable data �owafter
ertain period of time and TESLA provides a timer for this purpose. Moreover,in some
ases the handler must provide additional servi
es. For this reason, TESLAprovides a me
hanism to send events asyn
hronously to the appli
ation.2.10 TUN/TAPTUN and TAP [30℄ are virtual network kernel drivers. TUN/TAP is similar to aPoint-to-Point or Ethernet devi
e, whi
h re
eives and sends pa
kets between userspa
eprograms. TUN/TAP usually sends Ethernet or IP frames, depending on the
hosendriver, between the host network and a pro
ess. The main purpose of TUN/TAP istunneling network tra�
.TUN simulates a network devi
e and operates at the network layer (Layer 3) of theOSI model. It is used for routing pa
kets. A userspa
e appli
ation
an send IPframes to the interfa
e /dev/tunX and the kernel will re
eive the frame from thisinterfa
e, as well as the other way around.

CHAPTER 2. BACKGROUND 23TAP simulates an Ethernet devi
e and operates in the data link layer (Layer 2) of theOSI model. It
an be used to
reate a network bridge. A userspa
e appli
ation
ansend Ethernet frames to the interfa
e /dev/tapX and the kernel
an re
eive framesfrom this interfa
e.The main di�eren
e between TUN and TAP is that TUN operates with IP framesand TAP with Ethernet frames.TUN/TAP is used for Virtual Private Networks (VPNs). Some related proje
ts us-ing it are OpenSSH or OpenVPN. In addition, TUN/TAP is also used for virtualma
hine networking. Proje
ts su
h as Bo
hs or VirtualBox use it.2.11 Dummy interfa
eTCP/IP uses a dummy interfa
e to assign an IP address to the lo
alhost. SerialLine Internet Proto
ol (SLIP), Point-to-Point Proto
ol (PPP) and HIP for HIPLimplementation use dummy interfa
es. This interfa
e is Linux-spe
i�
.The reason for a dummy interfa
e is the need for an internal IP address although thehost is not
onne
ted to an Internet Servi
e Provider (ISP). There are network-awareappli
ations su
h as mail whi
h need to have an IP address to
onne
t to, even ifdoes not lead anywhere. For example,
onsider a laptop whi
h is dis
onne
ted fromthe network, with the loopba
k interfa
e as its single network a
tive devi
e. Anappli
ation may want to send data to another appli
ation in the same host. Theappli
ation tries to send data with the IP assigned by the ISP but the laptop isnot
onne
ted. Thus, the kernel does not know the IP and dis
ards the datagram,returning an error to the appli
ation. However, if the dummy interfa
e serves as thealter ego of the loopba
k interfa
e with the external IP address assigned and routed,every datagram to this IP is delivered lo
ally [28℄.

Chapter 3Problem Statement
3.1 Deployment ProblemAmongst the a
tive implementations of the HIP proto
ol, HIPL developed by HIIT[13℄ is the only one whi
h does not yet o�er total support for IPv4-only appli
ations.We must note that IPv4-only appli
ations are only supported by HIPL in the op-portunisti
 mode [14℄.Although IPv4 is still the fa
to of today's Internet, network infrastru
ture and ap-pli
ations are transitioning towards the next generation of Internet Proto
ols, IPv6.Nowadays, as we
an not talk about an IPv6-enabled Internet, both IP proto
olsmust
oexist.The
urrent HIPL implementation already supports IPv4 and IPv6 networks, as wellas IPv6 appli
ations. For IPv4 support, the strategy is to map an IPv4 address inan IPv6 stru
ture. Thanks to this me
hanism, the whole of the
ode stru
ture forIPv6
an be reused for IPv4. However, there are still some problems with IPv4 andIPSe
, su
h as the lega
y NAT traversal [1℄.However, HIPL does not yet support IPv4 appli
ations. The existen
e of IPv4 sup-port is important be
ause there is yet a la
k of IPv6 appli
ations for Linux.We assume that there will be no �ag day to deploy HIP and espe
ially that the Inter-net infrastru
ture (DNS servers) will not have HIP support immediately. Therefore,we assume that HIP requires tools for in
remental deployment. The opportunisti
mode
an be used as a me
hanism to dis
over when the
ommuni
ations
an beestablished using HIP with the peer. Currently, the opportunisti
 mode design is aninterposition library, but this thesis proposes to
hange this s
hema.24

CHAPTER 3. PROBLEM STATEMENT 25The main topi
s of this thesis are:
• Des
ribe the LSI identi�er.
• Support IPv4-only appli
ations. The s
ope is limited to the ICMP and ICMPv6proto
ol, as well as TCP and UDP transport proto
ols.
• Add interoperability between IPv4 and IPv6 appli
ations.
• Support opportunisti
 mode as a system library.The design and implementation are
on
entrated around boosting HIP deployment.3.2 Elaboration of the Deployment ProblemsThis se
tion elaborates the main deployment problems that we already listed in theprevious se
tion. We des
ribe the main problems and introdu
e a brief des
riptionof how our solution
an solve them.3.2.1 Des
ribe the LSI Identi�erThe LSI identi�er is synta
ti
ally an IPv4 address but semanti
ally represents aHIP identi�er. There is an open dis
ussion about whi
h must be the most
onve-nient range for LSI address spa
e. This address spa
e may be stati
 or dynami
.However, whatever option is
hosen introdu
es di�erent problems whi
h would beanalysed in this thesis.One aim of this thesis is to widely do
ument the LSI identi�er whi
h is always men-tioned very brie�y in di�erent RFCs and drafts.3.2.2 Supporting IPv4-only Appli
ationsCurrently IPv6 appli
ations are supported by HIP using the HIT as an appli
ationlayer identi�er. HITs resemble IPv6 addresses, thus developers do not have to modifythe appli
ation to make it use HIP and the appli
ation is unaware of HIP. A similarme
hanism is ne
essary to support IPv4 appli
ations. Therefore, HIPL implemen-tation must be extended in order to support a new identi�er
alled LSI.LSIs resemble IPv4 addresses. The
hoi
e we made implies that LSIs
an be in-terpreted
orre
tly only by the lo
alhost be
ause they are valid only within lo
al

CHAPTER 3. PROBLEM STATEMENT 26
ontext. This statement generates referral-related problems. The referral problemoriginates from broken appli
ation layer proto
ols that send IP addresses (HITs orLSIs in the
ase of HIP) on the wire. When su
h a proto
ol sends LSIs on wire, theybe
ome invalid or in
orre
t at the peer host. In this thesis, we study how to solvethis problem and we will see that the system-based opportunisti
 mode
ould be onepossible alternative for solving that.One aim of this thesis is to analyze the di�eren
es and performan
e between HITsand LSIs, as well as to show an example of the referral problem using LSIs.Appli
ations the LSI implementation supports are limited to the ones using theICMP proto
ol, as well as TCP and UDP transport proto
ols. Other proto
ols areout of the s
ope of this thesis.3.2.3 Interoperability between IPv4 and IPv6 Appli
ationsThe design and implementation adds support for IPv4 appli
ations. As the imple-mentation already supports IPv6 appli
ations, both IP versions will be supportedby HIP and, therefore, it is possible to enable
ommuni
ations between di�erent IPversions.Owing to the transition between both IP versions, IPv4 appli
ations may
ontinueworking with IPv6 appli
ations. For example, an IPv4 appli
ation on the
lient mustbe able to
ommuni
ate with the IPv6 appli
ation on the server, and the other wayaround.Moreover, the use of IPv4 appli
ations working over an IPv6 network using HIP,
ould be a
ompelling story for HIP. This is be
ause in general IPv6 migration re-quires dual sta
ks, that is, a host has both an IPv4 and an IPv6 proto
ol sta
k,but HIP uses that in a di�erent manner. At some point, in an IPv6-only world,systems will be able to turn o� their IPv4 sta
k [55℄. In a HIP
ase where there arean IPv4
lient and an IPv6 server, for example, the IPv4 address used by the
lientappli
ation
orresponds to the LSI, and this LSI would be translated to a HIT bythe HIP layer. At this point, we suppose that the network address is IPv4. Whenthe pa
ket arrives to the server the pa
ket is translated until it
ontains the IPv6identi�ers
alled HITs. In this
ase, the di�eren
e to a non-HIP environment is thatHIP provides two identi�ers to support both IP versions. However, without usingHIP, the IPv4 and TCP modules dete
t that the destination so
ket is an IPv6 one,and
onverts the IPv4 address into the equivalent IPv4-mapped IPv6 address.One goal in this thesis is to de
ide when the use of one proto
ol is preferable over the

CHAPTER 3. PROBLEM STATEMENT 27other depending on the IP version of the appli
ation of destination. Moreover, wewant to provide
ommuni
ation between appli
ations whi
h use di�erent IP versionswith our implementation.3.2.4 Supporting Opportunisti
 Mode as a System LibraryAs dis
ussed in the ba
kground
hapter, the dynami
 linking library shims system
alls. Interposition libraries inter
ept these
alls and
hange the expe
ted fun
tion-ality. The LD_PRELOAD environment variable
an load the interposition libraries.The
urrent HIPL opportunisti
 mode library uses this me
hanism.Our proposal is to
hange this behaviour and in
lude the opportunisti
 mode duringthe stati

ompilation, moving the opportunisti
 library from the user to the sys-tem level. The main advantage is that the system-based opportunisti
 mode doesnot need extra libraries and is independent of support to individual so
kets APIfun
tions. Furthermore, this method
an make the user experien
e easier using HIPbe
ause the user does not have to
on�gure any environmental variable.Both approa
hes do not need to modify the sour
e
ode of appli
ations thus, thelibrary supports lega
y appli
ations.In addition, the system-based opportunisti
 mode allows to support networks with-out PKI. A PKI [20℄ provides end-to-end se
urity and it is an arrangement that bindsuser identities with their publi
 keys by means of a Certi�
ate Authority (CA). Thereis a registration pro
ess for the binding whi
h must be
arried out by software orunder human supervision.However, HIP does not need a PKI. Sin
e the identity is represented by the publi
key, any proper proto
ol able to
he
k that the party owns the private key
orre-sponding to its publi
 key is enough. In our
ase, this authenti
ation proto
ol isin
luded during the Base Ex
hange whi
h
reates and negotiates the keys. However,if the peer does not have a PKI, the HIP host must use a non-PKI. The deployment ofglobal PKI infrastru
ture is virtually impossible, thus the opportunisti
 end-to-endse
urity, whi
h is based on the
on
ept of Leap of Faith se
urity or weak authenti-
ation, is enough for heterogeneous wired and wireless networks.As there is no �ag day where the majority of the hosts will support HIP, the most
ommon s
enario would be to establish
ommuni
ation with a non-HIP-aware peer.In this
ase, HIPL must fallba
k to a non-HIP
ommuni
ation. The system-basedopportunisti
 mode in
ludes this feature.

CHAPTER 3. PROBLEM STATEMENT 28One aim of this thesis is to analyze the di�eren
es and performan
e between thesetwo approa
hes.

Chapter 4DesignThis
hapter des
ribes the semanti
s of the LSI identi�er. We dis
uss the behaviourdesigned on both
lient and server side and also the interoperability design betweenthe two IP versions. Afterwards, we introdu
e a design proposal for an opportunisti
mode that reuses the LSI design.4.1 Lo
al S
ope Identi�erThis se
tion de�nes the main features of LSI and explains the di�erent te
hniquesHIPL uses in order to generate this identi�er.4.1.1 De�nitionIn our design, LSI is independent from the HIT. Hen
e, an LSI is not derived fromHIT. This approa
h eliminates
ollision and se
urity problems raised when HIP gen-erates an LSI from a HIT, be
ause an LSI is mu
h shorter than a HIT.In our implementation, an LSI address is allo
ated from the 1.0.0.0/8 subnet by de-fault, but the user or administrator
an
hange the pre�x dynami
ally. As initial de-
ision, we
hose the pre�x 192.168.0.0/24 but due to NAT problems, we moved to theother pre�x. These problems arose be
ause IANA allo
ates the range 192.168.0.0/16for private-use networks. Consequently, HIP
ould not di�erentiate between a NATaddress and an LSI identi�er. The a
tual approa
h
ontinues to generate prob-lems with NATs be
ause the 1.0.0.0/8 address spa
e is unallo
ated by IANA, thusnot registered to HIP. The related problems and possible solutions are dis
ussed in
hapter 6. 29

CHAPTER 4. DESIGN 304.1.2 LSI GenerationWhen the user or the system starts running hipd and runs an IPv4 appli
ation, theremust exist a mapping between the HIT, the LSI and the IP. The user
an exe
utethe mapping manually. Otherwise, hipd establishes the mapping automati
ally. Thehipd does not send the LSI on wire but it needs to know the
orresponding HITand IP for HIP and ESP-related pro
essing. We must noti
e that the peer LSI mustbe unique in the ma
hine, be
ause the host
an not have two di�erent peer hostnames mapped with the same peer LSI. There are di�erent ways for establishing themapping between the identi�ers and the IP:1. Manually. The hip
onf tool provides an option whi
h the user uses to mapsLSIs manually.2. DNS inter
eption. The DNS Proxy extension for HIPL in
ludes support forLSI resolution. When the appli
ation makes an AAAA re
ord request, theDNS Proxy module returns a HIT as an AAAA re
ord. When the appli
ationmakes an A re
ord request, the DNS Proxy program allo
ates and returns anLSI as an A re
ord response.3. Base Ex
hange. The �rst two possibilities show the mapping from the point ofthe initiator, but the responder must map LSIs. The responder generates anLSI for initiator automati
ally. The hipd handles the automati
 LSI generationduring the Base Ex
hange, spe
i�
ally when the responder re
eives the I2pa
ket.4.2 Pa
ket Pro
essingThe LSI pro
essing
onsists of inbound and outbound pa
ket handling. The HIP�rewall (hipfw) handles input and output pa
ket pro
essing for LSIs in HIPL im-plementation. It should be noted that hipfw is a
tually a multi-purpose daemonthat
an also handle HIP-based a

ess
ontrol (hen
e the name hipfw). Moreover,interoperability with HIPL userspa
e IPSe
 needs further work.Below is an example of a
lient-server s
enario. The systems are running hipd, whi
his responsible of HIP
ontrol plane signalling, and hipfw daemon. A
lient and aserver are running appli
ations, e.g. net
at [41℄ whi
h is a networking utility whi
hreads and writes data a
ross network
onne
tions, and both of them using TCP asthe transport layer proto
ol. The server starts up a servi
e at port 5555. The
lientappli
ation tries to
onne
t to the server over TCP. Then the server a

epts the
onne
tion, reads the re
eived data and prints it on the s
reen.

CHAPTER 4. DESIGN 314.2.1 Output Pa
ket Pro
essingThe output pa
ket pro
essing is illustrated in Figure 4.1 and des
ribed below.
Transport

User

Network

IPSec

Firewall HIPD

Application v4

1. Run client app

4. Connect(LSI)

5. IPTABLES packet interception

6. Trigger base exchange

7. <OK,HIT_PEER>

8. Packet reinjection (LSI−>HIT conversion)

9. ESP packet

Resolver
2. getaddrinfo(hostname)

3. LSI

Figure 4.1: Client-side s
hema1. The user runs a
lient appli
ation.2. The appli
ation queries the resolver in order to translate the hostname.3. The resolver returns the LSI assigned to this hostname.4. The appli
ation
onta
ts the peer LSI by
alling
onne
t().5. The pa
ket traverses through so
kets and TCP layers until hipfw
aptures itin the network layer owing to an iptables rule.6. The hipfw
he
ks whether the lo
al database already
ontains the peer HIT
orresponding to the peer LSI. If it does not �nd the entry, hipfw triggers theBase Ex
hange through hipd.7. When the Base Ex
hange �nishes
orre
tly, hipd
ommuni
ates the peer HITand LSI to hipfw.8. The hipfw
an build the new pa
ket, translating the LSI pair to the HIT pair.In addition, hipfw
a
hes the HIT-LSI mapping for future pa
kets. In this

CHAPTER 4. DESIGN 32way, there is no triggered se
ond Base Ex
hange for the same
onne
tion andthe pro
ess speeds up. Then, it reinje
ts the pa
ket again to the network sta
kwith HITs
onverted to LSIs.9. The IPSe
 module translates HITs to routable IP addresses and an SPI number,handles ESP en
apsulation and transmits the pa
ket on wire.4.2.2 In
oming Pa
ket Pro
essingFigure 4.2 shows inbound pa
ket pro
essing. We fo
us mainly on the inbound pa
k-ets that the server pro
esses.
Transport

Network

IPSec

Firewall

Application v4/v6

5. Packet(LSI)

4. Packet reinjection (HIT−>LSI)

1. Inbound packet

3. IPTABLES packet interception

2. SA detected

Figure 4.2: Server-side s
hemaThis s
enario is handled as follows:1. The server re
eives a pa
ket.2. A SA entry in the SADB demultiplexes the SPI �eld of the ESP header. TheESP module de
rypts the pa
ket and
onverts the IPv4/v6 header to an IPv6header
ontaining the HITs.3. An iptables rule in hipfw
aptures the pa
ket. At this point, the hipfw
he
kswhether LSI pro
essing is ne
essary or not, as we des
ribe in more detail inthe following se
tion.4. If hipfw applies LSI pro
essing, it reinje
ts the pa
ket to the sta
k again, butthis time with an IPv4 header
ontaining LSIs.

CHAPTER 4. DESIGN 335. The pa
ket with the LSIs arrives to the sta
k and the sta
k delivers the pa
ketto transport and appli
ation layers.4.2.3 Interoperability IPv4 and IPv6As we have explained in subse
tion 2.2.3, HIP supports IPv4 and IPv6 interoper-ability. This feature o

urs during inbound pa
ket pro
essing. The problem is howhipfw manages to demultiplex an in
oming pa
ket to an LSI or a HIT. An operatingsystem pro
ess is identi�ed by an IP address, a port number and the network pro-to
ol. We must noti
e that a single port
an be o

upied by the same appli
ationbut with di�erent address family (or proto
ol), as Figure 4.3 illustrates.Following poli
y
onsiderations spe
i�ed in [?℄, we design a lo
al poli
y in order tode
ide when a HIT must be translated to an LSI. The hipfw demultiplexes to anLSI if no pro
ess is listening to IPv6 on the parti
ular port number. In other words,HITs are preferred over LSIs be
ause they do not have the LSI disadvantages, as e.g.non-routable or
allba
k problems and furthermore, we expe
t IPv6 to dominatein the future. This logi
 applies only to TCP and UDP and not to ICMPv4 andICMPv6. This is be
ause the ICMP proto
ol is part of IP where ICMP messagesare usually generated as a response to errors in IP datagrams.
Stack

Network

UDP/TCP Header DataIPv6 Header

port_AAF_INET: AF_INET6: port_B

Process 1 Process 2

Figure 4.3: UDP and TCP headers
ontain the destination port number. The hipfwde
ides whi
h IP proto
ol to
hoose depending on the absen
e or presen
e of thelistening pro
ess in the IPv6 or IPv4 address family4.3 Alternative Design for LSIsOur design is
entered around the idea of
apturing LSI pa
kets with iptables rulesin hipfw and transforming them only when it is ne
essary. This approa
h overloadshipfw work and adds some problems, su
h as the in
reased laten
y per ea
h pa
ket

CHAPTER 4. DESIGN 34be
ause of the pro
essing time.The alternative design is to manage LSIs using IPSe
 SAs instead of the iptablesrules. An SA pair
ould be asso
iated with two SPIs, two HITs and also two LSIs.Furthermore, there must exist an SP that mat
hes pa
kets with LSIs or an LSI pre�x.We dis
arded this design be
ause
urrent Linux IPSe

annot asso
iate both an LSIpair and a HIT pair into a single SPI.4.4 Opportunisti
 Mode DesignThe opportunisti
 mode was already supported in the HIPL implementation as auser library. Our implementation goal is to move the opportunisti
 mode library tothe system level by reusing the LSI design for supporting the opportunisti
 mode.The main advantages of this approa
h are:
• Solving opportunisti
 library bugs.
hapter 6 examines the supported system
alls. But, we
an already
omment that supporting all so
ket
alls is
umber-some.
• Solving library dependen
y problems. There are some problems with
hainingof LD_PRELOADed appli
ations. All
hained libraries must support
hainingproperly or otherwise the appli
ation's network
onne
tivity is broken.
• Supporting more appli
ations. The system opportunisti
 mode supports moreappli
ations be
ause it is independent from the operating system and onlydepends on the transport layer proto
ols supported by hipfw.The library does not translate raw so
kets or so
kets already bound to HITs and it
an translate IPv4 or IPv6 addresses to HITs. As the address size for the di�erent IPversions is di�erent, it
reates for ea
h IP-based so
ket a
ompletely new HIT-basedso
ket [36℄.The system-based opportunisti
 mode design is des
ribed below. We must di�er-entiate two possible s
enarios, depending on the peer
apability to support HIP.However, both s
enarios have the �rst steps in
ommon, before the peer answers theBase Ex
hange. We must noti
e that the lo
al or peer address
an
hange duringthe
ommuni
ation, requiring a new Base Ex
hange.Figure 4.4 shows a �rst s
enario where the peer host is HIP enabled. We des
ribethe outbound pa
ket pro
essing below.

CHAPTER 4. DESIGN 35
Application v4

Transport

User

Network

IPSec

1. Run client app

2. Connect(IP)

3. IPTABLES −I OUTPUT 0.0.0.0/0 −j QUEUE

4. Firewall
6. <OK,HIT_PEER>

8. Packet reinjection (LSI−>HIT)

HIPD7. Map <HIT, LSI, IP>
5. Trigger base exchange

Figure 4.4: Opportunisti
 design: Peer HIP-aware1. The user or administrator runs an appli
ation.2. The appli
ation layer
alls
onne
t(IP).3. The hipfw inter
epts the pa
ket.4. The hipfw
he
ks its lo
al database. If the destination address is alreadyasso
iated with a HIT, hipfw goes to the �nal step.5. The hipfw triggers the Base Ex
hange in opportunisti
 mode with a HIT peerempty value. In this step, we must noti
e Base Ex
hange
an use the TCPextension dis
ussed in
hapter 2.6. Base Ex
hange is
ompleted su

essfully and returns the peer HIT value.7. The hipfw maps in its lo
al database the peer HIT, the peer LSI and the peeraddress.8. The ESP sta
k en
rypts the pa
ket and sends it to the peer host.Figure 4.5 shows a se
ond s
enario where the peer host is not HIP-enabled. Wedes
ribe the outbound pa
ket pro
essing below.1. The user or administrator runs an appli
ation.

CHAPTER 4. DESIGN 362. The appli
ation layer
alls
onne
t(IP).3. The hipfw inter
epts the pa
ket.4. The hipfw
he
ks its lo
al database. If the destination address is alreadyasso
iated with a HIT, we skip to the �nal step.5. The hipfw triggers the Base Ex
hange in opportunisti
 mode with a HIT peerempty value. In this step, we must noti
e Base Ex
hange
an use the TCPextension dis
ussed in
hapter 2.6. Base Ex
hange is not established, therefore the peer does not support HIP.7. In order to avoid HIP-
apability dete
tion the hipfw maps the IP address inits lo
al database, indi
ating with a �ag that the peer is not HIP-enabled.
Application v4

Transport

User

Network

1. Run client app

2. Connect(IP)

3. IPTABLES −I OUTPUT 0.0.0.0/0 −j QUEUE

4. Firewall HIPD
6. Timeout/TCP_SYN_ACK

5. Trigger base exchange7. IPTABLES −I OUTPUT
−dst IP ACCEPT

Figure 4.5: Opportunisti
 design: Peer not HIP-awareWe must
larify the se
ond step in Figure 4.5 and Figure 4.5, where the IP is re-ferring to an address di�erent from a HIT or an LSI. Our implementation of theopportunisti
 mode allows to fallba
k to non-HIP
ommuni
ations if the peer doesnot support HIP, but using the LSI identi�er, we assume that the peer supports HIP,and, if the
onne
tion with HIP is not possible, the
onne
tion should be reje
ted.At the input side, the re
eiver of a pa
ket should analyze the sour
e and destinationidenti�ers to de
ide when to apply LSI transformation.

Chapter 5ImplementationOur LSI implementation is based on the HIPL implementation. Originally, HIPLsupported only kernel-based IPSe
. The IPSe
 implementation of HIPL was sup-ported in the userspa
e by the end of this thesis. This feature is relevant for the LSImodule be
ause both implementations modify hipfw
omponent. Then, there is aneed to integrate the two extensions.HIPL is divided into �ve main
omponents. The HIP daemon (hipd), the HIP
on�guration tool (hip
onf), optional HIP so
ket handler, the BEET extension forIPSe
 and the optional �rewall (hipfw). We have
hanged the hipd, hip
onf andhipfw
omponents.In this
hapter, we show di�erent s
enarios whi
h illustrate the intera
tion betweenthe di�erent software
omponents using sequen
e diagrams. In order to simplify,the full exe
ution tra
e is not shown. Instead, we fo
us on the most relevant fun
-tions. Furthermore, the reader should not be
onfused if he or she tries to �nd the
orresponding fun
tions from the
ode be
ause we have used shorter names here.The reader must also bear in mind that fun
tion parameters have been omitted forsimpli
ity.5.1 Lo
al S
ope Identi�erThis se
tion studies the data stru
ture for LSIs in HIPL implementation. Se
ondly,we explain implementation details about the di�erent te
hniques HIPL uses in orderto generate this identi�er and to link it to a virtual interfa
e.
37

CHAPTER 5. IMPLEMENTATION 385.1.1 Data Stru
ture for LSIsWe introdu
e a new identi�er in the HIP proto
ol. As shown in Figure 5.1, an LSIis based on the in_addr stru
ture.typedef stru
t in_addr hip_lsi_t;Figure 5.1: The lsi stru
tureThis stru
ture handles Internet IPv4 addresses and it has a variety of representationsin the di�erent systems be
ause of a union. The
ommon �eld is s_addr, a 4-bytenumber where ea
h byte represents an IP address digit.5.1.2 LSIs on the Virtual Interfa
eIn HIPL, the host
an have up to four HITs with ea
h asso
iated with the
or-responding LSI. The LSIs and HITs are
ontained in dummy0 virtual interfa
e toprovide routes to the linux networking sta
k. There are three ways of
on�guring it:1. Io
tl
alls made (as if
on�g handles it).2. Netlink
alls (as iproute handles it).3. Through the /pro
 �lesystem.In the LSI implementation, we used the netlink library to populate the devi
e withthe respe
tive LSIs and the io
tl library for removing them. It is important to noti
ethat although netlink supports more than one IPv4 address without
reating aliases,io
tl does not support it. The example in Figure 5.2 shows the di�eren
e betweenthe two
ommands for
reating a multihomed devi
e.ip addr add <networkaddress>/<prefixlength> brd + dev <devi
e>if
onfig <devi
e>:<aliasnumber> <address> netmask <netmask> upFigure 5.2: Command line syntax for iproute and if
on�g to bring up a devi
e withan address

CHAPTER 5. IMPLEMENTATION 395.1.3 LSI GenerationWe already explained the three possible ways LSIs are generated in
hapter 4. Herewe will dwell on the implementation details.Manual
on�gurationThe hip
onf tool is a
ommand line interfa
e for hipd. This tool parses the
om-mands to the hipd and it has been extended in order to support LSIs. The user
anspe
ify the LSI in the hip
onf
ommand, otherwise the daemon will generate the LSIon the �y, as shown in Figure 5.3.
hipconf hipd

hip_add_peer_map()

hip_add_peer_info()

hip_generate_lsi()

!LSI

hadb

hipconf add map HIT IP [LSI]

Figure 5.3: Hip
onf add map sequen
e diagramAn example of how to use the hip
onf tool for this purpose is shown below inFigure 5.4.>hip
onf add map 2001:001b:2b1d:55f7:798a:f476:af0a:f826128.214.114.58 1.0.0.7>hip
onf add map 2001:001b:2b1d:55f7:798a:f476:af0a:f826128.214.114.58Figure 5.4: A typi
al exe
ution of the
ommand hip
onf add mapAutomati

on�gurationAutomati

on�guration
onsists of
reating the mapping between the peer identi-�ers without using the hip
onf tool. For this purpose, the user or administratormust add the HIT and optionally the LSI to the HIP resolver �le and the IP address

CHAPTER 5. IMPLEMENTATION 40in the hosts �le. The automati

on�guration was already working for IPv6, althoughthe LSI information was not read from the resolver. Currently this fun
tionality issupported. And we added too the automati

on�guration for LSIs whi
h is depi
tedin Figure 5.5.
Application FirewallTransport Layer hipd hadb

hip_generate_LSI()

hip_trigger_bex()

connect(LSI)

!LSI

get_endpoint_info()

hip_add_peer_info()

send_i1()

Resolver Peer Host

Figure 5.5: Automati
 peer information
on�guration sequen
e diagramInitially, the user runs a lega
y IPv4 appli
ation using the LSI identi�er, whose pa
k-ets are
aptured by the �rewall. The �rewall dete
ts that the Base Ex
hange wasnot established for the peer LSI. Therefore, it triggers the Base Ex
hange and thehipd
alls the resolver in order to look up the peer host information. On
e the hipdhas the information, this is added to the HADB and afterwards the Base Ex
hangeis set up with the peer host.DNS Proxy resolutionThe DNS Proxy extension for HIP provides HI/HIT-based look-up servi
e for theend-host. Unlike the rest of the implementation, this extension is implemented withPython. It inter
epts DNS requests from an end-host and returns a HIT instead ofan IP address if it �nds one.5.1.4 Modi�ed Database Stru
turesHIPL has mainly two databases whi
h store information about the lo
al host identi-ties and the
urrent asso
iations with the di�erent peers. In order to support LSIs,we modi�ed these two data stru
tures.

CHAPTER 5. IMPLEMENTATION 41Host Identity DatabaseThe Host Identity Database (HIDB)
ontains the lo
alhost Host Identities and re-lated information, as shown in Figure 5.6. The HIDB
ontains four lo
al HITs/HIsand also LSIs with ea
h HI tied to an LSI.hipd initializes the database upon startup.stru
t hip_host_id_entry {stru
t hip_lhi lhi;hip_lsi_t lsi;stru
t hip_host_id *host_id; /* allo
ated dynami
ally */stru
t hip_r1entry *r1; /* pre
reated R1s */stru
t hip_r1entry *blindr1; /* pre-
reated R1s for blind*//* Handler to
all after insert with an argument, 0 if OK*/int (*insert)(stru
t hip_host_id_entry *, void **arg);/* Handler to
all before remove with an argument, 0 if OK*/int (*remove)(stru
t hip_host_id_entry *, void **arg);void *arg;}; Figure 5.6: HIDB re
ord stru
tureCurrently, hipd generates the lo
al LSIs stati
ally when it starts running. As shownin Figure 5.7, hipd stores LSIs stati
ally in an array and
opies them to the HIDBwith the
orresponding HIT. Furthermore, the �rst LSI ("1.0.0.1") is always thedefault LSI
orresponding to the default HIT.stati

har *lsi_addresses[℄ = {"1.0.0.1","1.0.0.2","1.0.0.3","1.0.0.4"};Figure 5.7: HIDB stati
 initializationHost Asso
iation DatabaseIndependently of the HIDB, there is a se
ond database
alled Host Asso
iationDatabase (HADB). Its obje
tive is to re
ord HIP-related state information aboutpeer hosts. The database is indexed by the pair of lo
al and peer HIT. The LSIextension in
ludes the related lsi pair,
omposed by the lo
al and the peer LSIs, to

CHAPTER 5. IMPLEMENTATION 42the entries in the database.5.2 Pa
ket Pro
essingThe hipfw daemon already handles data plane inter
eption and it was therefore anatural pla
e also to implement LSI pro
essing. Furthermore, in order to preservemodularity, the LSI hipfw related fun
tions are in a separated module, whi
h
on-tains fun
tions that handle in
oming and outgoing LSI pa
kets and the ones thatreinje
t the pa
ket again to the network sta
k. The LSI module of hipfw
a
hesinformation about the peer HITs and the peer LSIs. hipfw uses this information inorder to trigger the Base Ex
hange or not. In
ase the Base Ex
hange is alreadyestablished, hipfw gets the
orrespondent HIT pair from the database.Next, we present some sequen
e diagrams from the point of view of a
lient-servermodel.5.2.1 Output Pa
ket Pro
essingWhen a datagram traverses through the network sta
k, hipfw
aptures it with thefollowing rule:iptables -I OUTPUT -d 1.0.0.0/8 -j QUEUEThe hipfw output handler
hain
onsists of hip, esp and lsi handlers amongst someother handlers. As shown in Figure 5.8, the lsi module
he
ks the state of the BaseEx
hange in the �rewall database (fwdb). If the answer is negative, it triggers theBase Ex
hange. Otherwise, hipfw reinje
ts the pa
ket. The reinje
tion pro
ess
on-sists of repla
ing the IPv4 header with an IPv6 header where the destination andsour
e addresses
orrespond to the HITs asso
iated to the LSIs. hipfw handles thereinje
tion using raw so
kets.5.2.2 In
oming Pa
ket Pro
essingIn this subse
tion, we fo
us on inbound pa
kets at the server side. As well asduring the outbound pro
ess, hipfw
aptures in
oming HIT-based pa
kets using thefollowing rule:ip6tables -I INPUT -d 2001:0010::/28 -j QUEUE

CHAPTER 5. IMPLEMENTATION 43
Application Firewall LSI_PacketTransport Layer

4. is_lsi?()

TRUE

IPSec hipd

FALSE6. hip_trigger_bex()

fwdb

1. connect(LSI)

5. modify_header_and_reinject()

3. hip_fw_outgoing_lsi()

7. set_hit_lsi()

2.

Figure 5.8: Outgoing sequen
e diagram on the
lient hostThe hipfw input
hain
ontains the same handlers as the output
hain. We havebeen inspired by the me
hanism used by netstat appli
ation. hipfw looks up thetransport proto
ol-related �les pla
ed in the dire
tory /pro
/net. If hipfw �nds thedestination port in the �le "/pro
/net/t
p6", it does not
hange the pa
ket, other-wise hipfw
hanges the IPv6 header to an IPv4 header whi
h in
ludes the LSIs andreinje
ts the new pa
ket to the sta
k. Then, the appli
ation re
eives the reinje
tedpa
ket. Be
ause reinje
tion with "mangle" does not support interfamily transfor-mations, the kernel queues the pa
ket in the outgoing queue instead of the inboundone,
onsequently the pro
ess requires to
he
k the identi�ers in order to de
ide theright dire
tion. The in
oming s
enario is depi
ted in Figure 5.9 where we assumethat the transport proto
ol is TCP.
ApplicationIPSec

AF_INET6

/proc/net/tcp6LSI_Packet

AF_INET

Transport Layer

6. modify_header_and_reinject()

2. get_family()

4.
3.

5.

1. hip_fw_incoming_hit()

Firewall

Figure 5.9: In
oming sequen
e diagram on the server host5.3 Proto
ol translation me
hanismAs we already explained in the previous se
tion, the pa
ket su�ers a translationme
hanism from IPv4 to IPv6. In this se
tion, we dig into this pro
ess, showing the

CHAPTER 5. IMPLEMENTATION 44
onsequent header transformations.The
hange of IP header a�e
ts the transport layer proto
ols and ICMP. Therefore,the unique and main
hange whi
h su�ers the header of these proto
ols is the re
al-
ulation of the
he
ksum �eld, sin
e these header proto
ols are based on an overlayheader whi
h
ontains the IP addresses.As we are using raw so
kets, with the outgoing pa
kets is the kernel whi
h buildsthe new IP header. Then, the transport layer
hanges are enough. However, we hadto build the IPv4 header for in
oming pa
kets whose destination appli
ation onlysupports IPv6. The reason is that bind fun
tion
an not bound the sour
e addressto the so
ket be
ause this IP address is from the peer. In this
ase, we further sim-pli�ed the pro
ess not translating extensions or options. For ease of implementation,the header length and total length �elds are re-
omputed. The address �elds are seta

ording to the address mapping between LSI and HIT. We dire
tly
opied to TTLthe value from the Hop Limit �eld in IPv6.Unlike the above-mentioned �elds, there are some �elds where there is not an equiv-alen
e manner to express the information. This is the
ase of the quality of servi
e or�ow-related �elds. This is be
ause the semanti
s in the IPv6
ontext for the qualityof servi
e di�er from the ones used by IPv4 [35℄. Then, we de
ided to set these �eldsto a default stati
 value, e.g. the value of zero for the type of servi
e �eld in theIPv4 header.As the MTU value for the dummy0 interfa
e is limited to 1280 bytes, there is nofragmentation and in
onsequen
e we did not have to deal with the translation offragments.

Chapter 6AnalysisFirstly, this
hapter presents the performan
e evaluation
on�guration. Se
ondly,we analyze the results with di�erent
harts and tables for TCP and ICMP proto
ols.In addition, we study other related problems that we found during the analysis andtesting pro
esses. We introdu
e these topi
s in the following order: LSI addressspa
e, Maximum Transfer Unit, referral problem and LSI
ompatibility with otherextensions.6.1 Performan
e Evaluation Con�gurationIn this se
tion we present
on�guration of the performan
e measurements in di�erents
enarios. Furthermore, we explain the test platforms and software used.6.1.1 Test PlatformsWe performed our measurements on two ma
hines following the
lient-server s
hema.The
lient was the initiator and the server the responder. We used the hipl�userspa
e�2.6�pat
h-1817 version in both ma
hines for testing LSI, HIT and Op-portunisti
 System Based s
enarios performan
e. We
onne
ted the ma
hines usinga dire
t 1 Gbit link. The MTU default value in the dummy interfa
e was 1280 bytes.Below in Table 6.1 we des
ribe the hardware and operative system
hara
teristi
son both ma
hines used during the tests. The network layer is always IPv4 and theupper layer address is IPv4 when it is appli
able.6.1.2 Test SoftwareWe used Iperf version 2.0.2 for the TCP throughput testing tool [18℄. For a TCP
onne
tion, Iperf shows the bandwidth and throughput, and by default sends an45

CHAPTER 6. ANALYSIS 46Initiator ResponderUbuntu Hardy 8.04 64-bits Ubuntu Hardy 8.04 64-bitsKernel 2.6.25.8 (64-bits) and BEETPATCH Kernel 2.6.25.8 (64-bits) and BEETPATCH2048 KB 4096 KBIntel(R) Core(TM) 2 CPU T64002.13GHz 2 x Intel(R) Core(TM) 2 Duo T73002.00GHzTable 6.1: System
on�guration of the testing environment8KB array for 10 se
onds. In addition, we tested the performan
e of the system
all
onne
t() with the appli
ation
onntest-
lient-hip whi
h is in
luded in hipl�userspa
e�2.6�pat
h-1817. In both test s
enarios, we used the tool hip
onf rst all inorder to reset the established
onne
tions. Therefore, we
an
ompare the in
rease oftime when hipd has to establish a new
onne
tion with a peer and the time neededduring normal tra�
, when both hosts have already set up the
onne
tion.We tested the ICMP and ICMPv6 proto
ols using the ping and ping6 tools [47℄. Theping program sends an ICMP e
ho request message and expe
ts an ICMP e
ho replyto be returned. In addition, it
an be used to measure the Round-Trip Time (RTT)to a host. We show the arithmeti
 mean and the standard deviation for the RTTvalues
aptured. We show a testing s
enario of 20 samples for LSI, HIT, SystemBased and User Based Opportunisti
 Modes and �nally a plain ICMP s
enario.6.1.3 Test Pro
edureWe used the following test plan to
ondu
t our measurements. We tested TCP andICMP running hipd and hipfw on both ma
hines. A desktop
omputer a
ts asthe initiator and a laptop as the re
eiver, where ea
h measured result
onsists of20 samples. Firstly, we fo
us our tests in the throughput during data tra�
 usingTCP over ESP where we
ompare the performan
e of LSIs, HITs and the user-basedopportunisti
 mode. Finally, we tested ICMP and ICMPv6 proto
ols with LSI andHIT identi�ers, using the opportunisti
 mode and without a HIP environment.6.2 Results and Analysis of the Performan
e Measure-mentsThis se
tion shows the results that we obtained with di�erent s
enarios following the
on�guration that we explained in the previous se
tion. We fo
us on TCP studyingits throughput and
onne
t performan
e. Finally, we move to the ICMP results.

CHAPTER 6. ANALYSIS 47
6.2.1 TCP ThroughputIn Figure 6.1, we illustrate the average and the standard deviation of the throughputof data during HIP tra�
. The x axis presents di�erent modes of HIP and the yaxis displays the throughput of the
ommuni
ation in Mbits/s.

 0

 200

 400

 600

 800

 1000

Plain TCP

HIT
Opportunistic Library

System
-based Opportunistic

LSI

T
C

P
 th

ro
ug

hp
ut

 in
 M

bi
ts

/s

TCP throughput during data traffic

throughput
standard deviation

Figure 6.1: Throughput of di�erent HIP modesThe
hart shows that the average value for LSIs is 94 Mbits/s with a standard devi-ation value of 1.3 Mbits/s. The average throughput for HITs is 300 Mbits/s with astandard deviation of 5.1 Mbits/s. In the opportunisti
 mode s
enario, the averageof the user-based mode is 296 Mbits/s with a standard deviation of 5.0 Mbits/s andwith the system-based mode 54 Mbits/s with a standard deviation 0.7 Mbits/s. Aplain TCP
onne
tion has an average value of 942 Mbits/s with a standard deviationof 0.3 Mbits/s. As the measurements show, a
ommuni
ation under HIP a
hieves thebest results when it uses the HIT identi�er, followed by the user-based opportunisti
library, although the di�eren
e in throughput between HIT and library-based s
enar-ios is almost non-existent. Furthermore, LSI has almost twi
e as good performan
eas the system-based mode. The LSI identi�er and system-based modes are threetimes slower than HIT and library-based modes in pro
essing and delivering data.

CHAPTER 6. ANALYSIS 486.2.2 TCP
onne
tIn Figure 6.2, we illustrate the average and the standard deviation of the system
all
onne
t(). In our testing environment, it is the program
onntest-
lient-hip that
alls this fun
tion. The x axis represents di�erent modes of HIP and the logarithmi
y axis displays the time to
omplete the Base Ex
hange and the TCP handshake inms after the appli
ation
alls the system
all
onne
t().
 1

 10

 100

 1000

 10000

HIT
HIT old

Opportunistic Library

Opportunistic Library old

LSI

m
s

TCP response time values for connect() system call

time
standard deviation

Figure 6.2: TCP
onne
t() performan
eThe results we obtained, without the logarithmi
 s
ale on the y-axis, show that theaverage value for LSIs is 3000 ms with a standard deviation value of 2 ms. Theaverage time for HITs is 47 ms with a standard deviation of 2 ms. This time
onsistsof the time to
omplete the Base Ex
hange and the TCP handshake. In the oppor-tunisti
 mode s
enario, the average of the user-based mode is 46 ms with a standarddeviation of 3 ms. Ea
h of these measurements set up the
onne
tion. As we
anobserve with the following measurements, this pro
ess highly in
reases the responsetime of the system
all. On
e the state is established, the average value for HITs,
alled HIT old in the
hart, de
reases until 0.3ms with a negligible standard devi-ation. The same goes for the opportunisti
 user-based mode, named Opportunisti
Library old in the
hart, where the se
ond s
enario shows an average value of 0.7 ms.This test shows that the LSI has a surprisingly bad performan
e with a
onstant3 se
onds delay. This is related with the initial value of TCP's RetransmissionTimeout (RTO) timer. In a Linux operating system, the initial RTO is 3 se
onds by

CHAPTER 6. ANALYSIS 49default. When the SYN pa
ket does not arrive to the server or the SYN ACK to the
lient, it
auses a timeout with the initial RTO value [40℄ [59℄. The e�e
t of RTO inthroughput [3℄ is:
• The sender transmits few pa
kets til it expires.
• Sender shall restart in slow start mode with the initial value of the
ongestionwindow (
wnd).In the HIPL
ontext, this is due to LSI implementation dropping data pa
kets un-til both peers establish the Base Ex
hange. Therefore, there are multiple pa
ketlosses whi
h
ause the RTO. The [3℄ introdu
es how to avoid RTO
aused by mul-tiple pa
ket losses with the modi�ed fast re
overy algorithm of TCP New Reno orsele
tive a
knowledgement (SACK) option and it explains how to avoid RTO withretransmitted pa
kets. Both methods should be applied in our
ontext in order toavoid RTO.On the other hand, this behaviour is not present in the library implementation be-
ause it blo
ks the so
ket
alls until the host establishes the Base Ex
hange with thepeer. Then, no pa
kets are lost [36℄.6.3 ICMPThe results of the di�erent tested s
enarios are shown in Table 6.2.The mean RTT is 0.261 ms without using HIP in our testing s
enario, where thedeviation of the sample is 0.13 ms. The mean RTT using LSIs is 0.658 ms with astandard deviation of 0.044 ms. The mean RTT using HITs was 2.424 ms with astandard deviation of 0.147 ms. The system-based opportunisti
 mode has a meanRTT value of 1.119 ms with a standard deviation of 0.097 ms.S
enario Average DeviationPlain ICMP 0.261 ms 0.13 msHIT based 0.319 ms 0.030 msLSI based 0.658 ms 0.044 msSys-basedOpp. Mode 1.119 ms 0.097 msTable 6.2: RTT values in a HIP and plain
ommuni
ationResults show that a HIP
ommuni
ation in
reases the RTT. As we
an observe, theRTT performan
e is twi
e as good with HITs instead of LSIs. Furthermore, the

CHAPTER 6. ANALYSIS 50system-based opportunisti
 mode is almost four times higher than the HIT identi�erand twi
e the LSI average.6.4 List of Supported IPv4 Appli
ationsWe tested ping, net
at, ssh and ftp with LSIs during the development of the LSIs.We used the LSI dire
tly in the appli
ation layer be
ause DNS Proxy support forLSIs is not yet available.6.5 LSI Address Spa
eWe de
ided to use a �xed address spa
e in the range 1.0.0.0/8. This address spa
eis unallo
ated by IANA [16℄ whi
h means it
an not be used by NATted networksor the LSI identi�er. However, we
an take into a

ount that the use of LSI is lo
alin
ontrast to NAT addresses whi
h go on the wire. Below we present the potentialproblemati
 s
enarios.Imagine a host with an appli
ation
alling
onne
t() with an LSI. Moreover, the hostalso has assigned an IP address whi
h
orresponds to a private IPv4 address in theLSI range. The hipfw will
apture the pa
ket be
ause of the iptables rule and will
hange the LSIs to the HITs. This s
enario does not present any problem unless thedestination address, whi
h goes on the wire, is also in the LSI range. In this
ase,our design
reates an in�nite loop, be
ause hipfw translates the LSI to a HIT andafterwards to an IP equal to the LSI pre�x, thus hipfw
aptures the pa
ket againby the LSI output rule in iptables.On the input side there is no problem. The pa
ket just arrives to an interfa
e su
has eth0.We present three possible solutions for avoiding LSI
ollisions with NAT namespa
es.Firstly, we propose the stati
 allo
ation s
heme, reserving the 1.0.0.0/8 address spa
efor HIP proto
ol. The se
ond alternative is to use 1.0.0.0/8 and allow IANA toallo
ate ea
h address individually. The third alternative is to perform the LSI toHIT translation higher in the TCP/IP sta
k,
onsequently a me
hanism realizes the
onversion before the pa
ket rea
hes the kernel routing table. This last solutionimplies kernel
hanges or interposition libraries.

CHAPTER 6. ANALYSIS 516.6 Maximum Transfer Unit and LSIsThe maximum size of a pa
ket is theoreti
ally determined by the IP proto
ol. Spe
if-i
ally, the maximum size of an IPv4 datagram is 65535 bytes. This is be
ause of the16 bits value for the len �eld in the IPv4 header. The maximum size of an IPv6datagram is also 65575 bytes be
ause of a 16 bits �eld in the header. However, layer3 in the OSI model de�nes the Maximum Transfer Unit (MTU) whi
h representsthe maximum size of an IP datagram that the network devi
e
an handle withoutfragmentation. The
ommon MTU for an Ethernet devi
e is 1500 bytes, and it isthe value used by default with the dummy0 virtual interfa
e. When the frame sizeis bigger than the MTU, the pa
ket must be fragmented.We observed a problem using LSIs when transmitting a �le with size of 1408 bytesor larger. As an example, let us
onsider an appli
ation that sends a �le of 1500bytes. The hipfw
aptures a 1500 bytes pa
ket where:1. The IP header is 20 bytes, as we do not set up any option.2. The IP payload is 1460 bytes, where 32 bytes
orrespond to the TCP headerand the remaining 1428 bytes to the data.As shown in Figure 6.3 the transformation pro
ess from IPv4 to IPv6 in
reases thesize of the pa
ket 20 bytes. After the IP translation is performed, we also add theESP header to the pa
ket, further in
reasing the �nal pa
ket length.The
hange of the MTU value allowed us to re
eive the total amount of data thatthe
lient requested in a passive FTP
onne
tion where the
lient was using HITsand the server LSIs.
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

IPv4 Header TCP Header FTP−DATA

FTP−DATATCP HeaderESPIPv6 Header

ESP + (IPv6 − IPv4)

Figure 6.3: LSI-to HIT
onversion and e�e
ts on MTU6.7 TUN/TAP me
hanismInstead of using a virtual interfa
e dummy0, we
ould use a TUN virtual tunneldevi
e where the outgoing LSI pa
kets
an be redire
ted. The TUN devi
e makes

CHAPTER 6. ANALYSIS 52available the re
eived pa
kets for the hipd through the /dev/net/tun devi
e. When anew pa
ket is read from the virtual devi
e, the LSI
an be translated to the HITs andafterwards transformed into an ESP pa
ket. The advantage of this method is thatthe userspa
e lo
ates the bu�er where the virtual devi
e queues the pa
kets, thusthe bu�er
an be larger than in the kernel spa
e. Afterwards, we
an
ontinue usingraw so
kets for pa
ket reinje
tion into the IP sta
k. TUN/TAP is also more portable.6.8 The referral problemCurrently, IP addresses are used in di�erent ways by di�erent appli
ations. Betweenthe possible
ategorizations [7℄, we fo
us on the following:
• Callba
ks. The appli
ation at the lo
alhost retrieves the IP address of the peerand the peer uses it to later
ommuni
ate with the same lo
alhost.
• Referrals. In an appli
ation with more than two hosts, host B obtains the IPaddress of host A and passes that to host C. After that, host C uses this IPaddress to
ommuni
ate with host A.The deployment of appli
ations
arrying IP addresses in the data stream
reatessome problems in NATted environments as well as with LSIs. Some examples ofthese appli
ations or proto
ols are FTP or Simple Network Management Proto
ol(SNMP) MIBs for
on�guration [11℄. In the next subse
tion, we
on
entrate on theFTP
ase.6.8.1 FTP and ReferralsFile Transfer Proto
ol (FTP) [51℄ is a network proto
ol used for storing and re-trieving �les over TCP
onne
tions. FTP uses two separate TCP
onne
tions for
ommuni
ation, one for data and one for
ontrol. The FTP server listens by defaulton port 21 for the
ontrol
hannel, whi
h transfers FTP requests and replies. Onthe other hand, the FTP server listens by default on port 20 for the data
hannel,whi
h transports �les. There are two types of data transfers:1. A
tive. The
lient spe
i�es to the server the IP address and port number wherethe server should
onne
t ba
k. The server port is 20. The
lient program sendsthe PORT
ommand to the server spe
ifying the IP address and port numberwhere it should
onne
t ba
k. If the
lient host is using an IPv6-enabled FTP,the
ommand is EPTR.2. Passive. The
lient asks the server for the IP address and port number where it
an
onne
t and re
eive the data. The
lient program sends the PASV
ommand

CHAPTER 6. ANALYSIS 53to ask the server whi
h IP address and port it must
onne
t to. If the serverhost uses an IPv6-enabled FTP, the
ommand is EPSV. This mode is usuallythe one used by default in web browsers.The FTP proto
ol uses both modes in
luding the address and port within the pro-to
ol,
reating the
allba
k problem. In parti
ular, the FTP PORT
ommand andthe PASV responses in
lude the IP address in ASCII in the FTP
ontrol pa
ketpayload [23℄. We found in the LSI s
enario that the appli
ation treats the LSIs as IPaddresses, and as we have mentioned in this thesis, this identi�er has a lo
al s
ope,meaning initiator and responder
an not have the same LSIs. Thus, the peer hostappli
ation has no system
ontext to resolve the LSI ba
k to a HIT or an IP address.We studied referrals with FTP using hipl�userspa
e�2.6�pat
h-1661 version. Table 6.3shows that when the appli
ation uses HITs on both sides, there is full support forboth FTP modes. We explain below the s
enario when the appli
ation uses LSIs onboth sides. Client Server A
tive PassiveHIT HIT OK OKHIT LSI KO OKLSI HIT KO KOLSI LSI KO KOTable 6.3: Results obtained using lftp 3.6.1 on the
lient side and proftpd 1.3.1 onthe server sideWe now show an example where HIP fails due to the referral problem. We want toset up a HIP-enabled FTP session between two hosts. The FTP server uses Proftpdversion 1.3.1 and the
lient uses lftp version 3.6.1. We show an output example whenwe run the
lient and try to list the dire
tories of the peer ma
hine.ftp -v 1.0.0.7Conne
ted to 1.0.0.7.220 ProFTPD 1.3.1 Server (ProFTPD Default Installation) [1.0.0.1℄Name (1.0.0.7:tfinez):331 Password required for tfinezPassword:230 User tfinez logged inRemote system type is UNIX.Using binary mode to transfer files.ftp> ls500 Illegal PORT
ommandftp: bind: Address already in useftp> passive

CHAPTER 6. ANALYSIS 54Passive mode on.ftp> ls227 Entering Passive Mode (1,0,0,1,213,223).ftp:
onne
t: Conne
tion refusedAs we
an see, we obtain a
ontrol
onne
tion to the server be
ause the
onne
-tion establishment is done via TCP. This results in error 500 and we solve it usingpassive mode. Afterwards, when we retry the ls
ommand, the server refuses the
onne
tion. As we
an see, the server address is 1.0.0.1. This is the default LSIidenti�er value of the server, but in the
lient
ontext this LSI is its own LSI andnot the server one, as we show with the netstat output at the
lient:Proto Re
v-Q Send-Q Lo
al Address Foreign Address Statet
p 0 0 1.0.0.1:46191 1.0.0.7:21 ESTABLISHEDThis is the netstat output at the server:Proto Re
v-Q Send-Q Lo
al Address Foreign Address Statet
p 0 0 1.0.0.1:21 1.0.0.5:46191 ESTABLISHEDAs we
an observe, there is no relation between the LSIs. Therefore, when the LSIsare passed on the proto
ol payload, we lose the
ontrol to determine the sour
e anddestination addresses.It
ould seem odd that the
ase where HITs are used in the
lient and LSIs in theserver works in passive mode. The explanation is that the server is responding withthe EPSV
ommand where only the port is spe
i�ed and not the server address. Thea
tive mode in this s
enario does not work be
ause the server does not support theIPv6 network proto
ol, thus the
lient re
eives the error 522. The reason
ould bebe
ause the server re
eives the EPTR
ommand with the HIT and it does not knowhow to manage the IPv6 address be
ause the server is bound to an IPv4 address.In addition, FTP
an use referrals instead of
allba
ks. This feature also representsa problem, although referrals with FTP are rarely used. A possible solution is thathipfw
an dynami
ally modify the
ontents of the
ontrol
onne
tion, rewriting theLSIs in the pa
ket with the right LSI pair in the host. Otherwise, the user or admin-istrator
an use a similar appli
ation, e.g. sftp. This appli
ation is the se
ure formof FTP. It is an FTP based on ssh. As the last option, the user or administrator
anuse an IPv6 FTP server be
ause the HIT identi�er works properly with both modes.

CHAPTER 6. ANALYSIS 556.8.2 Solution for FTP using LSIsAs we pointed out, one solution is to modify the LSI
ontained in the payload by theone that has a
ontext in the lo
al ma
hine. We already explained that an in
omingpa
ket is de
rypted and afterwards the pa
ket
ontaining the HITs is
aptured by arule in hipfw. If the destination appli
ation is IPv6 there is no problem, otherwisewe need to verify when the appli
ation proto
ol is FTP. In this
ase, not only thehipfw must translate the IPv6 header to an IPv4 one,
ontaining the LSIs, but alsothe hipfw must
he
k the payload in order to
hange the LSI to the peer LSI valuerepresented lo
ally a

ording to the
orresponding ESP tunnel.6.9 LSI CompatibilityThe LSI module must be
ompatible with the rest of the extensions that in
lude theHIPL implementation. This se
tion fo
uses on the most interesting
ompatibilityissues related with this master thesis: normal �rewall a

ess
ontrol and userspa
eIPSe
.6.9.1 Normal Firewall A

ess ControlThe LSI design is based on
apturing and queuing pa
kets that
ontain LSI addressesto
hange this identi�er by its
orrespondent HIT. The hipfw
arries out this
apturepro
ess with new rules de�ned with iptables. Basi
ally, there is a rule for outgoingpa
kets spe
ifying the LSI pattern and another rule for in
oming pa
kets spe
ify-ing the HIT pattern. The input rule that
aptures HITs, is
ompatible with hipfwa

ess
ontrol be
ause the LSI module modi�es the pa
ket only when the destina-tion appli
ation only supports IPv4. Otherwise, hipfw pro
esses the pa
ket and thebehaviour is the same as before adding the LSI support. On the other hand, theoutput rule a�e
ts only LSI tra�
 be
ause as we already dis
ussed, the LSI addressspa
e is unassigned by IANA. However, it
ould
ause some problems related withmisbehaving NATs.6.9.2 Userspa
e IPSe
The userspa
e IPSe
 extension was implemented almost simultaneously as the LSIextension. The userspa
e IPSe
 design relies on the same base as LSIs. Both im-plementations must be
ompatible. Userspa
e IPSe
 relies on getting HIT-basedoutbound pa
kets as input and non-HIT inbound pa
kets as output. Figure 6.4shows the pro
essing of the outbound pa
ket. As we
an see, both extensions mod-ify and reinje
t the pa
ket again. It must be noti
ed that, while the LSI extension

CHAPTER 6. ANALYSIS 56only modi�es the IP header, the IPSe
 extension is a bit more tri
ky be
ause iten
rypts the data and adds the ESP header using the BEET mode.
IPSec extensionLSI extension

Firewall

LSI HIT Reinjection HIT IP @ Reinjection

iptables HIT ruleiptables LSI ruleFigure 6.4: Firewall outbound pa
kets s
hema in
luding LSI and IPSe
 extensionsNext, we show in Figure 6.5 the input pro
essing. As we
an see, now hipfw appliesthe userspa
e IPSe
 extension in the �rst pla
e in order to de
rypt the pa
ket andto add the HITs into the IPv6 header. Furthermore, we must not forget that hipfwtranslates HITs to LSIs only if the destination appli
ation does not support IPv6.
Firewall

LSI extensionIPSec extension

IP @ HIT Reinjection HIT LSI Reinjection

iptables HIT ruleiptables ESP ruleFigure 6.5: Firewall inbound pa
ket s
hema for LSI and IPSe
 extensions6.10 Opportunisti
 ModeThis se
tion dis
usses the advantages and disadvantages between system-based andlibrary-based opportunisti
 modes. Then, we
ompare the TESLA approa
h withthe opportunisti
 system library.One of the main disadvantages of the opportunisti
 library is the la
k of system
all implementation. As a
onsequen
e, HIPL supports appli
ations in this s
enariodepending on the system
alls that the running appli
ation uses. Below we enumeratethe supported system
alls in the library-based opportunisti
 mode:1. so
ket2. bind

CHAPTER 6. ANALYSIS 573.
onne
t4. send, sendto and sendmsg5. re
v, re
vfrom and re
vmsg6. a

ept7. write and writev8. read and readv9.
lose10. listen11. pollAlthough the most used system
alls by appli
ations are wrapped, there are still otherimportant fun
tions missing, e.g. setso
kopt, getso
kname, getpeername,
lone, dup,dup2, f
lose and sele
t from the
urrent implementation. A

ording to this approa
h,the user must tra
e the system
alls [56℄ made by the appli
ation in order to �nd thenot supported ones. This obje
tive be
omes more
ompli
ated when the sour
e
odeis not available. On the other hand, the system-based opportunisti
 mode solvesthis problem be
ause there is no inter
eption library. In this
ase, it is the hipfw,whi
h
aptures the pa
kets to trigger the opportunisti
 me
hanism. The libraryfully supports the TCP proto
ol, but the UDP [48℄ and ICMP proto
ols are not yetsupported. As we
an see, the system-based mode moves the binding from system
alls present in the library below the TCP layer.The se
ond problem that the user library model introdu
es is a
on�i
t betweenother LD_PRELOADs. The point to solve is to de
ide whi
h library the appli
a-tion must pro
ess �rst in
ase we have another library whi
h is already modifyingthe same system
all as the opportunisti
 library. Thus, we must take into a

ounthow to manage
haining of the libraries in the LD_PRELOAD approa
h.With the user library from the TESLA we
ould use the approa
h whi
h we in-trodu
ed in
hapter 2. TESLA and the library-based mode share the interpositionlibrary s
hema. But TESLA provides an upper layer of abstra
tion be
ause the ser-vi
e operates in network �ows rather than so
kets. However, TESLA is also basedon the LD_PRELOAD approa
h, adding the disadvantages that we des
ribed before.

Chapter 7Con
lusionsIn this thesis, we fo
used on supporting lega
y IPv4 appli
ations in lega
y systems.Despite IPv6 being designed to repla
e IPv4 in the long term, the reality is that IPv4will live together with IPv6 during quite a long period. Another important
onsid-eration is that there will always be IPv4-only lega
y appli
ations whose sour
e
odeis not available or written in an ar
hai
 programming language. Modifying exist-ing appli
ations or rewriting new ones is expensive. By using LSIs provided by HIP,even lega
y appli
ations
an use IPv6 without modifying them, and also bene�t fromother features provided by HIP.We designed and implemented LSI support to enable interoperability between IPv4and IPv6 appli
ations in HIP for Linux (HIPL), the implementation was sele
ted asthe referen
e HIP implementation.Apart from the design and implementation of LSIs, we
ondu
ted tests on the per-forman
e with di�erent HIP identi�er s
enarios and the two di�erent approa
hesto the opportunisti
 mode library. Di�erent tests have been
arried out using thefollowing proto
ols: TCP and ICMP. The LSI and system-based opportunisti
 modeare
urrently less e�
ient in our
ode than the userspa
e library-based approa
h.The implementation does not yet have pa
ket queues and threads whi
h explainsthe di�eren
e in performan
e. In addition, the LSI module realizes input/outputqueries per ea
h pa
ket re
eived, in order to de
ide whi
h IP version the destinationappli
ation supports, in
reasing the pro
essing time of the pa
ket. We also experi-en
ed a 3-se
ond delay per ea
h measurement during a TCP
onne
tion using LSIs.Furthermore, the library-based approa
h fa
es some pra
ti
al problems.We found some problems with referrals and
allba
ks. The problem is related to thede�nition of LSIs, whi
h are limited by its lo
al s
ope. We studied these s
enariosdeeply with FTP. We showed that the
ommuni
ation with HITs at both sides worksas well as when the FTP
lient appli
ation is IPv6 and the FTP server uses IPv458

CHAPTER 7. CONCLUSIONS 59in passive mode. During this study, we tried to transfer high quantities of data,realising that the MTU value used by default in HIP had to be
hanged.In addition, we reviewed the
ompatibility with userspa
e IPSe
 and the normal�rewall a

ess
ontrol. As a result, we provided some guidelines for future work.We proposed to move the opportunisti
 library from the user to the system levelreusing the LSI design. The system level approa
h solves some
urrent bugs in theopportunisti
 library, removes library dependen
y problems and in
reases the num-ber of appli
ations that HIP supports.In addition, we
ompared our approa
hes with the TESLA approa
h. TESLA hasin
ommon with the opportunisti
 user library that both of them use the interposi-tion library me
hanism. TESLA provides a high-level abstra
tion to session servi
esand it allows to
ompose a
hain of servi
es. However, TESLA may have the sameinherent limitations as the user-based opportunisti
 library.To re
ap, the LSI-based and system-based opportunisti
 mode approa
h seem promis-ing ways to fa
ilitate HIP deployment and ease the transition towards IPv6-basednetworks.

Chapter 8Future WorkThe design and implementation e�orts have brought up some future resear
h anddevelopment ideas that we des
ribe in this
hapter. Initially we dis
uss future workrelated with LSIs and afterwards that related with opportunisti
 mode. Finally wedis
uss the future guidelines for integrating, in a
ompatible way, the di�erent ex-tensions in the hipfw module.8.1 LSI Future WorkThis se
tion fo
uses on the related issues with this proje
t that need future work.8.1.1 Assign an Address Spa
eOur proposal de�nes a �xed LSI pre�x, but there exist a
tive dis
ussions on this topi
be
ause IANA has not assigned the range 1.0.0.0/8 for LSIs. In the future, there maybe a need to reserve a name-spa
e for LSIs. This option is not very feasible at themoment be
ause HIP is not deployed widely yet. On the other hand, we
an thinkthat the approa
h where the mapping between LSIs and HITs is done on higher lev-els of the TCP/IP sta
k is better. However, this option implies kernel modi�
ationswhi
h require more e�ort and have to be a

epted to the linux kernel. Therefore,we de
ided to implement the other approa
h that is more suitable for lega
y systems.8.1.2 Support DNS ResolutionDNS Proxy support for LSI was not implemented yet during the writing of this the-sis. When the appli
ation makes an AAAA request, the DNS Proxy module returnsa HIT as an AAAA response if there is a HIP RR. If the appli
ation makes an A60

CHAPTER 8. FUTURE WORK 61request and there is a HIP RR, the DNS Proxy module returns an LSI as an Aresponse. The allo
ated LSI
an be re
eived using the output of "hip
onf get haall|HIT".8.1.3 Withdraw Pa
kets LossWe must provide a me
hanism to queue the pa
kets until the hosts establish theBase Ex
hange. The
urrent LSI implementation drops the pa
kets until the | es-tablishes the Base Ex
hange,
reating an RTO. This approa
h is detrimental for theLSI performan
e. One approa
h
an be to blo
k the initiator appli
ation after the�rst query until a positive answer is obtained from the Base Ex
hange. The loss ofpa
kets is not a problem for the TCP proto
ol be
ause it will retransmit them again,but the same does not apply to UDP or ICMP.The reinje
tion me
hanism used with LSIs needs to be improved be
ause it addsextra time during the pro
essing of the pa
ket. Namely, userspa
e IPSe
, system-based opportunisti
 mode and LSI modules immediately reinje
t the pa
ket afterpro
essing it, whereas it would be more e�
ient for all of them to modify the pa
ketand only then to reinje
t it. However, this did not work be
ause of interfamily trans-formations.8.1.4 Solve the Referral ProblemAppli
ations using referrals or
allba
ks with LSIs have to be supported in some way.For example, hipfw should implement referral
onversion for FTP
ontrol pa
kets,similarly to what NAT devi
es and Appli
ation Layer Gateways (ALGs) do today.As an alternative solution, the system-based opportunisti
 mode
ould be used tohandle referral problems. This approa
h does not break the FTP RFCs and avoidsmodi�
ations to FTP implementations.In addition, there are many appli
ations that a
tually have addresses to appli
ationlayer headers, although they do not ne
essarily use them. For example, IM proto
ols,IMAP, POP, SIP or HTTP. If these proto
ols have IPv6-based appli
ations, the useror administrator
an use HITs.Unfortunately, the reality is that many IPv6-based appli
ations are still being runwithout IPv6 support. In this
ase, we must realize whether the appli
ation is justlogging the IP addresses but not ne
essarily using them for anything. In this
ase,the LSI module works although the appli
ation logs the wrong LSI values. The re-ferral problem brought up that more tests must be done with a wide variety of IPv4appli
ations to �nd out possible problemati
 s
enarios.

CHAPTER 8. FUTURE WORK 62
8.1.5 Optimize the ImplementationThe HIP implementation of Eri
sson handles LSIs
loser to the appli
ation, at thekernel so
ket handler whi
h may be a better option be
ause it solves
urrent problemswhi
h need future work. Eri
sson's implementation solves referral and misbehavingNAT problems be
ause it translates the LSI to the HIT before arriving to the routingtables.In general, we must improve the LSI performan
e optimizing the implementation.Moreover, we must �nd a solution in order to de
rease the 3s
onsumed by the sys-tem
all
onne
t() in the TCP proto
ol, be
ause the other identi�ers have a prettylow delay
ompared to LSIs.8.1.6 Improve /pro
 a

essCurrently hipfw implements a me
hanism to de
ide if it must modify an in
omingpa
ket with HITs by a pa
ket
ontaining LSIs or opportunisti
 IP addresses. Hipfwmanages this pro
ess
he
king if the destination port is in the �le "/pro
/net/t
p6".The main disadvantage is that the daemon does this veri�
ation per ea
h pa
ket,running a syn
hronous input/output operation where the appli
ation blo
ks untilthe system
all is
omplete. The input/output system
alls are the most time
on-suming ones. Thus, this behaviour
reates a bottlene
k that we must solve in orderto improve the run-time performan
e.We would re
ommend to improve the /pro
 a

ess by broad
asting the in
omingpa
kets. The alternative
onsists on broad
asting ea
h in
oming pa
ket to HIT, LSIand opportunisti
 IP at the same time. TCP drops pa
kets with dupli
ate, i.e. outof order sequen
e. Assume an appli
ation able to listen both address families. Then,as TCP uses a sequen
e number to identify the order of the bytes sent from the
lient, it pro
esses a �rst pa
ket and in
rements the expe
ted sequen
e number. Asthe other two pa
kets have a wrong sequen
e number, TCP dis
ards them withoutgenerating any response.However, the results of the experimentation proof that there are some problems.Let's assume an appli
ation listening on port 1111. The hosts re
eives an in
omingpa
ket with LSIs. Then, hipfw broad
asts an LSI and HIT-based pa
kets. TheLSI pa
ket is delivered properly to the appli
ation, but as no appli
ation re
eivesthe HIT-based pa
ket, the TCP sta
k generates an RST pa
ket and sends it to the

CHAPTER 8. FUTURE WORK 63initiator. In su
h situation, the initiator aborts the TCP
ommuni
ations.On the other hand, UDP is an unreliable transport proto
ol, thus dupli
ate pa
kets
ould exist unless the appli
ation implements dupli
ate dete
tion.In
on
lusion,
urrently HIPL
he
ks if there is an IPv6 appli
ation but broad
astit otherwise (to LSI and system opportunisti
-based appli
ations). If we have anIPv6-based system opportunisti
 mode in the future, we may have to
hange thisbehaviour.8.2 Integrate Di�erent ExtensionsThe
omponent hipfw manages three extensions: opportunisti
 TCP, userspa
eIPSe
 and LSI. The last two extensions follow the reinje
tion s
hema explained inthis thesis. This pro
edure adds several disadvantages that we must take into a
-
ount in order to improve the integration of the extensions. First of all, the numberof times iptables pro
ess a pa
ket is the number of a
tive extensions plus one. Con-sequently, hipfw enqueues a pa
ket in the output queue of iptables various times,in
reasing the loading of the queue. Se
ondly, reinje
ted pa
kets arrive at the outputqueue, whi
h makes it hard to distinguish amongst inbound and outbound pa
ketmodi�
ations.To avoid these problems, we
ould take a new approa
h. This new proposal
hangesthe reinje
tion me
hanism by
reating a
hain of handlers that implements all thene
essary pa
ket modi�
ations before reinje
ting the pa
ket. We must be aware tokeep the
orre
t order of extension pro
essing for handling input and output pa
ketsto ensure
ompatibility when more than one extension is in use.As userspa
e IPSe
 relies on re
eiving HIT-based pa
kets, it must be the last ex-tension pro
essing outbound pa
kets. The LSI extension relies on re
eiving LSIidenti�ers and therefore, it must be the �rst extension hipfw pro
esses in order to
reate a HIT-based pa
ket. On the other hand, userspa
e IPSe
 extension mustpro
ess inbound pa
kets �rst be
ause it relies on getting non-HIP pa
kets as inputand then by the LSI extension be
ause it expe
ts to re
eive HIT-based pa
kets inorder to de
ide on the translation to an LSI-based pa
ket. The s
enario des
ribedintegrating both extensions is shown in Figure 8.1.

CHAPTER 8. FUTURE WORK 64

IPSec extensionLSI extension

LSI HIT Reinjection IP @ Reinjection

iptables HIT ruleiptables LSI rule

IPSec extension LSI extension

iptables HIT ruleiptables ESP rule

ReinjectionLSIHITReinjectionHITIP @

Firewall Inbound Packet

Firewall Outbound Packet

HIT

Figure 8.1: Firewall inbound and outbound pa
kets s
hema in
luding the integrationof LSI and IPSe
 extensions, saving iptables queuing and unne
essary reinje
tions

Bibliography[1℄ A. Pathak and A. Gurtov. IPv4 Support for HIP, May 2006.[2℄ L. Aarhus and J. Riisnaes. Emerging Network Proto
ols From IPv6 and RSVPto ATM, April 1998.[3℄ B. Kim, Y. Kim, M. Oh and J. Choi. Mi
ros
opi
 Behaviors of TCP LossRe
overy using Lost Retransmission Dete
tion. In Consumer Communi
ationsand Networking Conferen
e, 2005. CCNC. 2005 Se
ond IEEE, pages 296�301,January 2005.[4℄ C. Benvenuti. Understanding Linux Networks Internals. O'REILLY, 1st edition,2005.[5℄ B. Bishaj. E�
ient leap of faith se
urity with host identity proto
ol, June 2008.[6℄ D. E. Comer. Internetworking with TCP/IP Prin
iples, proto
ols and ar
hite
-ture. Pearson-Prenti
e Hall, 5th edition, 2006.[7℄ E. Nordmark. Multi6 Appli
ation Referral Issues. IETF, Jan 2005. [InternetDraft℄.[8℄ HIT
ollisions statisti
s. http://www.ietf.org/mail-ar
hive/web/hipse
/
urrent/msg00727.html.[9℄ G. Nakhimovsky. Debugging and Performan
e Tuning with Library Interposers(Originally published in Unix Insider under the title "Building library inter-posers for fun and pro�t", July 2001), July 2001.[10℄ A. Gurtov. Host Identity Proto
ol (HIP). Towards the Se
ure Mobile Internet.Willey, 1st edition, 2008.[11℄ T. Hain. RFC 2993: Ar
hite
tural Impli
ations of NAT, November 2000.[12℄ Thomas R. Henderson. Host mobility for IP networks: A
omparison. IEEENetwork Magazine, 17(6):18�26, November 2003.[13℄ InfraHIP O�
ial HomePage. http://infrahip/.[14℄ InfraHIP O�
ial HomePage Manual. http://infrahip/manual.65

http://infrahip/
http://infrahip/manual

BIBLIOGRAPHY 66[15℄ N. Horman. Understanding and programming with netlink so
kets. Te
hni
alreport, De
ember 2004.[16℄ IPv4 Global Uni
ast Address Assignments.http://www.iana.org/assignments/ipv4-address-spa
e/.[17℄ Internet So
ket. http://en.wikipedia.org/wiki/Internet so
ket.[18℄ Iperf - The TCP/UDP Bandwidth Measurement Tool.http://dast.nlanr.net/Proje
ts/Iperf/.[19℄ J. Cal
ote. Autotools: a pra
titioner's guide to Auto
onf, Automake and Libtool,2008. http://www.freesoftwaremagazine.
om/books/.[20℄ J. Dankers, T. Garefalakis, R. S
ha�elhofer and T. Wright. Publi
 Key Infras-tru
ture in Mobile Systems. Ele
troni
s Communi
ation Engineering Journal,14(5):180�190, O
tober 2002.[21℄ J. Salz, A. C. Snoeren and H. Balakrishnan. TESLA: A Transparent, ExtensibleSession-Layer Ar
hite
ture for End-to-end Network Servi
es. In Pro
eedingsof the 4th Conferen
e on USENIX Symposium on Internet Te
hnologies andSystems, volume 4. USENIX Asso
iation, Mar
h 2003.[22℄ J. Ylitalo and P. Nikander. A new Name Spa
e for End-Points: ImplementingSe
ure Mobility and Multi-homing a
ross the two versions of IP. In Pro
eedingsof the 5th European Wireless Conferen
e, Mobile and Wireless Systems beyond3G, pages 435�441, February 2004.[23℄ P. Fran
is K. Egevang. RFC 1631: The IP Network Address Translator (NAT),May 1994.[24℄ K. Kai
huan. Kernel Korner - Why and How to Use Netlink So
ket. LinuxJournal, January 2005.[25℄ S. Kent. RFC 4303: IP En
apsulating Se
urity Payload (ESP), De
ember 2005.[26℄ S. Kent and R. Atkinson. RFC 2401: Se
urity Ar
hite
ture for the InternetProto
ol, November 1998.[27℄ Brian W. Kernighan and Dennis M. Rit
hie. The C Programming Language.Prenti
e Hall, 2nd edition, 1988.[28℄ O. Kir
h and T. Dawson. Linux Network Administrator's Guide: Network Ad-ministrator's Guide : [a Unix-
ompatible Operating System℄. O'REILLY, 1stedition, 2000.[29℄ J. Klensin. RFC 3467: Role of the Domain Name System (DNS), February2003.

http://www.iana.org/assignments/ipv4-address-space/
http://dast.nlanr.net/Projects/Iperf/
http://www.freesoftwaremagazine.com/books/

BIBLIOGRAPHY 67[30℄ M. Krasnyansky. Universal TUN/TAP driver.http://vtun.sour
eforge.net/tun/.[31℄ J. Laganier and L. Eggert. RFC 5204: Host Identity Proto
ol (HIP) RendezvousExtension, April 2008.[32℄ libipq, 2001. Linux Programmer's Manual.[33℄ The qui
k intro to libipq. http://www.im
hris.org/proje
ts/libipq.html.[34℄ V. K. Lam M. E. Fiu
zynski and B. N. Bershad. The design and implementationof an ipv6/ipv4 network address and proto
ol translator. In Pro
eedings of theAnnual Conferen
e on USENIX, June 1998.[35℄ M. E. Fiu
zynski, V. K. Lam and B. N. Bershad. The Design and Implementa-tion of an IPv6/IPv4 Network Address and Proto
ol Translator. In Pro
eedingsof the 1998 USENIX Conferen
e, 1998.[36℄ M. Komu and J. Lindqvist. Leap of Faith Se
urity is Enough for Mobility. InPro
eedings of the 2008 Applied Cryptography and Network Se
urity Conferen
e,June 2008.[37℄ M. Komu and J. Lindqvist. Leap-of-Faith Se
urity is Enough for Mobility,January 2009. To appear in the 6th Annual IEEE Consumer Communi
ationsNetworking Conferen
e IEEE CCNC 2009.[38℄ M. Komu and T.Henderson. Basi
 So
ket Interfa
e Extensions for Host IdentityProto
ol (HIP). IETF, July 2008. [Internet Draft℄.[39℄ M. S. Blumenthal and D. D. Clark. Rethinking the design of the Internet: Theend to end arguments vs the brave new world. 1, August 2001.[40℄ N. Seddigh and M. Devetsikiotis. Studies of TCP's Retransmission TimeoutMe
hanism. 6:1834�1840, June 2001.[41℄ Net
at. http://net
at.sour
eforge.net/.[42℄ P. Nikander and J.Melen. A Bound End-to-End Tunnel (BEET) mode for ESP.IETF, August 2006. [Internet Draft℄.[43℄ P. Nikander and J. Laganier. RFC 5205: Host Identity Proto
ol (HIP) DomainName System (DNS) Extensions, April 2008.[44℄ R. Moskowitz P. Jokela, Ed. and P. Nikander. RFC 5202: Using the En
apsu-lating Se
urity Payload (ESP) Transport Format with the Host Identity Proto
ol(HIP), April 2008.[45℄ J. Laganier P. Nikander and F. Dupont. RFC 4843: An IPv6 Pre�x for OverlayRoutable Cryptographi
 Hash Identi�ers (ORCHID), April 2007.

http://vtun.sourceforge.net/tun/

BIBLIOGRAPHY 68[46℄ P. Nikander, J. Ylitalo and J. Wall. Integrating Se
urity, Mobility, and Multi-homing in a HIP Way. In Pro
eedings of Network and Distributed SystemsSe
urity Symposium. NDSS 2003, volume 3, pages 2120�2125, February 2003.[47℄ ping and ping6, 2007. System Manager's Manual: iputils.[48℄ J. Postel. RFC 768: User Datagram Proto
ol. Internet Engineering Task For
e,August 1980.[49℄ J. Postel. RFC 791: Internet Proto
ol (IP), September 1981.[50℄ J. Postel. RFC 793: Transport Control Proto
ol. IETF, September 1981.[51℄ J. Postel and J. Reynolds. RFC 959: File Transfer Proto
ol (FTP), O
tober1985.[52℄ P. Jokela Ed. R. Moskowitz, P. Nikander and T. Henderson. RFC 5201: HostIdentity Proto
ol, April 2008.[53℄ R. Moskowitz, P. Jokela, P. Nikander and T. Henderson. Host Identity Proto
ol.IETF, June 2004. [Internet Draft℄.[54℄ W. Ri
hard Stevens. TCP/IP Illustrated, Volume 1: The Proto
ols. Addison-Wesley, 1st edition, 1994.[55℄ W. Ri
hard Stevens. UNIX Network Programming, Volume1: The so
kets net-working API. Addison -Wesley, 3rd edition, 2004.[56℄ stra
e, 2003. Linux Programmer's Manual.[57℄ T. Aura, A. Nagarajan and Andrei Gurtov. Analysis of the HIP Base Ex
hangeProto
ol. In 10th Australasian Conferen
e on Information Se
urity and Priva
y,July 2005.[58℄ T. R. Henderson, J. M. Ahrenholz and J. H. Kim. Experien
e with the HostIdentity Proto
ol for Se
ure Host Mobility and Multihoming. In Wireless Com-muni
ations and Networking. WCNC 2003. 2003 IEEE, volume 3, pages 2120�2125, Mar
h 2003.[59℄ TCP delay. http://www.linuxquestions.org/questions/linux-networking-3/3000ms-delay-on-t
p-
onne
tions-613670/.[60℄ The Transparent Extensible Session-Layer Ar
hite
ture for End-to-End NetworkServi
es. http://www.sds.l
s.mit.edu/proje
ts/tesla/.[61℄ The PKI page. http://www.pki-page.org.[62℄ T.Henderson, P. Nikander and M. Komu. Using the Host Identity Proto
ol withLega
y Apppli
ations. IETF, July 2008. [Internet Draft℄.[63℄ Joel M. Winett. RFC 0147: The De�nition of a So
ket. Internet EngineeringTask For
e, May 1971. http://www.ietf.org/rf
/rf
0147.txt.

http://www.sds.lcs.mit.edu/projects/tesla/
http://www.ietf.org/rfc/rfc0147.txt

	Abbreviations and Acronyms
	Introduction
	Problem statement
	Scope
	Structure of the thesis

	Background
	IPv4 vs IPv6
	Host Identity Protocol
	New stack architecture
	New name space layer and identifiers
	Interoperating with IPv4 and IPv6
	HIP Base Exchange
	HIP Opportunistic Mode

	Domain Name System
	Resource Records
	Resolvers and Name Servers
	DNS Extension for HIP

	IP Security
	Architecture
	IPSec with HIP

	Raw sockets
	Creation
	Output packet
	Input packet

	Introduction to the libipq library
	Introduction to Netlink
	Message Format
	Netlink Macros

	Introduction to Dynamic Linking with LD_PRELOAD
	TESLA
	Architecture
	Interposition

	TUN/TAP
	Dummy interface

	Problem Statement
	Deployment Problem
	Elaboration of the Deployment Problems
	Describe the LSI Identifier
	Supporting IPv4-only Applications
	Interoperability between IPv4 and IPv6 Applications
	Supporting Opportunistic Mode as a System Library

	Design
	Local Scope Identifier
	Definition
	LSI Generation

	Packet Processing
	Output Packet Processing
	Incoming Packet Processing
	Interoperability IPv4 and IPv6

	Alternative Design for LSIs
	Opportunistic Mode Design

	Implementation
	Local Scope Identifier
	Data Structure for LSIs
	LSIs on the Virtual Interface
	LSI Generation
	Modified Database Structures

	Packet Processing
	Output Packet Processing
	Incoming Packet Processing

	Protocol translation mechanism

	Analysis
	Performance Evaluation Configuration
	Test Platforms
	Test Software
	Test Procedure

	Results and Analysis of the Performance Measurements
	TCP Throughput
	TCP connect

	ICMP
	List of Supported IPv4 Applications
	LSI Address Space
	Maximum Transfer Unit and LSIs
	TUN/TAP mechanism
	The referral problem
	FTP and Referrals
	Solution for FTP using LSIs

	LSI Compatibility
	Normal Firewall Access Control
	Userspace IPSec

	Opportunistic Mode

	Conclusions
	Future Work
	LSI Future Work
	Assign an Address Space
	Support DNS Resolution
	Withdraw Packets Loss
	Solve the Referral Problem
	Optimize the Implementation
	Improve /proc access

	Integrate Different Extensions

